
Page 1 of 62

A Holistic, Innovative Framework for the Design,
Development and Orchestration of 5G-ready

Applications and Network Services over Sliced
Programmable Infrastructure

DELIVERABLE D3.2

INTELLIGENT ORCHESTRATION MECHANISMS

Due Date of Delivery: M24 Mx (31/05/2019 dd/mm/yyyy)

Actual Date of Delivery: 20/08/2019 dd/mm/yyyy

Date of Revision Delivery: 02/10/2020 dd/mm/yyyy

Workpackage:
WP3 – Intelligent Orchestration
Mechanisms

Type of the Deliverable: OTHER

Dissemination level: PU

Editors:
UBITECH, UPRC, INC, SUITE5, ININ, ATOS,
NCSRD, INTRA

Version: 2.0

Co-funded by
the Horizon 2020
Framework Programme
of the European Union

Call:

H2020-ICT-2016-2

Type of Action:

IA

Project Acronym:

MATILDA

Project ID:

761898

Duration:

38 months

Start Date:

01/06/2017

Project Coordinator:

Name:
Franco Davoli

Phone:
+39 010 353 2732

Fax:
+39 010 353 2154

e-mail:
franco.davoli@cnit.it

Technical Coordinator:

Name:
Panagiotis Gouvas

Phone:
+30 216 5000 503

Fax:
+30 216 5000 599

e-mail:
pgouvas@ubitech.eu

Page 2 of 62

Deliverable D3.2

List of Authors

ATOS ATOS SPAIN SA

Aurora Ramos, Fernando Díaz and Javier Melián

INC INCELLIGENT IDIOTIKI KEFALAIOUCHIKI ETAIREIA

Panagiotis Demestichas, Kostas Tsagkaris, Nikos Stasinopoulos, Athina Ropodi, Aristotelis
Margaris, Dimitris Cardaris, Marinos Galiatsatos, Vasilios Bourdouvalis, Nikos Gavriil,
Konstantinos Bitsakos

ININ
INTERNET INSTITUTE, COMMUNICATIONS SOLUTIONS AND
CONSULTING LTD

Luka Koršič, Dušan Mulac, Jaka Cijan, Janez Sterle

INTRA INTRASOFT INTERNATIONAL SA

Kostas Thivaios, Marios Logothetis

NCSRD NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS”

Themistoklis Anagnostopoulos, Akis Kourtis

S5 SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED

Lefteris Lampathakis, Katerina Zerva

UBITECH
GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON
PLIROFORIKIS ETAIREIA PERIORISMENIS EFTHYNIS

Panagiotis Gouvas, Anastasios Zafeiropoulos, Eleni Fotopoulou, Thanos Xirofotos

UPRC UNIVERSITY OF PIRAEUS RESEARCH CENTRE

Chrysostomos Symvoulidis, Emmanouil Alexakis, Eftychia Vorila, Dimitris Drakoulis

Page 3 of 62

Deliverable D3.2

Disclaimer

The information, documentation and figures available in this deliverable are written by the
MATILDA Consortium partners under EC co-financing (project H2020-ICT-761898) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

Copyright

Copyright © 2020 the MATILDA Consortium. All rights reserved.

The MATILDA Consortium consists of:

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (CNIT)

ATOS SPAIN SA (ATOS)

ERICSSON TELECOMUNICAZIONI (ERICSSON)

INTRASOFT INTERNATIONAL SA (INTRA)

COSMOTE KINITES TILEPIKOINONIES AE (COSM)

ORANGE ROMANIA SA (ORO)

EXXPERTSYSTEMS GMBH (EXXPERT)

GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON PLIROFORIKIS
ETAIREIA PERIORISMENIS EFTHYNIS (UBITECH)

INTERNET INSTITUTE, COMMUNICATIONS SOLUTIONS AND CONSULTING LTD (ININ)

INCELLIGENT IDIOTIKI KEFALAIOUCHIKI ETAIREIA (INC)

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” (NCSRD)

UNIVERSITY OF BRISTOL (UNIVBRIS)

AALTO-KORKEAKOULUSAATIO (AALTO)

UNIVERSITY OF PIRAEUS RESEARCH CENTER (UPRC)

ITALTEL SPA (ITL)

BIBA - BREMER INSTITUT FUER PRODUKTION UND LOGISTIK GMBH (BIBA)

SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (S5)

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the MATILDA Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement of
the authors of the document and all applicable portions of the copyright notice must be clearly
referenced.

Page 4 of 62

Deliverable D3.2

Table of Contents

DISCLAIMER .. 3

COPYRIGHT ... 3

TABLE OF CONTENTS .. 4

TABLE OF ACRONYMS ... 5

1 EXECUTIVE SUMMARY ... 6

2 INTRODUCTION ... 7

2.1 SCOPE OF THE DOCUMENT ... 7

2.2 MATILDA END-TO-END STORY ... 8

3 DEPLOYMENT AND EXECUTION MANAGER ... 12

3.1 MAIN COMPONENTS .. 14

3.2 INTERFACES ... 15

3.3 BASELINE TECHNOLOGIES ... 16

4 MATILDA AGENT AND SERVICE DISCOVERY MECHANISMS ... 17

4.1 MAIN COMPONENTS .. 19

4.2 INTERFACES ... 21

4.3 BASELINE TECHNOLOGIES ... 22

5 MONITORING MECHANISMS .. 23

5.1 MATILDA OVERALL MONITORING SOLUTION .. 23

5.1.1 Application component monitoring .. 25

5.1.2 Network Slice monitoring .. 28

5.1.3 NFVO/OSM metric collection .. 28

5.1.4 qMON NFV-based monitoring .. 31

5.2 BASELINE TECHNOLOGIES ... 37

6 DATA FUSION, REAL-TIME PROFILING AND ANALYTICS TOOLKIT ... 39

6.1 MAIN COMPONENTS .. 43

6.1.1 Data Fusion ... 43

6.1.2 Real-time profiling and Analytics module .. 46

6.2 INTERFACES ... 47

6.3 BASELINE TECHNOLOGIES ... 48

7 POLICIES ENFORCEMENT AND CEP MECHANISMS .. 49

7.1 MAIN COMPONENTS .. 51

7.1.1 Policies Enforcement mechanism ... 51

7.1.2 Complex Event Processing mechanism .. 52

7.2 BASELINE TECHNOLOGIES ... 54

8 NORTHBOUND APIS FOR COMMUNICATION SERVICE PROVIDERS ... 55

8.1 MAIN COMPONENTS .. 55

8.2 INTERFACES ... 56

8.3 BASELINE TECHNOLOGIES ... 59

9 CONCLUSIONS ... 60

REFERENCES ... 61

Page 5 of 62

Deliverable D3.2

Table of Acronyms

Acronym Definition

5G PPP 5G Public Private Partnership

API Application Programming Interface

BSS Business Support System

CSM Computing Slice Manager

DoA Description of Action

NFVO Network Function Virtualization Orchestrator

IE Inference Engine

JSON JavaScript Object Notation

OSM Open Source MANO

OSS Operational Support System

PCE Path Computation Engine

PM Production Memory

SDS Service Discovery Server

UE User Equipment

UI User Interface

VAO Vertical Application Orchestrator

VSC Version Control System

VIM Virtual Infrastructure Manager

VNF Virtual Network Function

WIM Wide-area Infrastructure Manager

WM Working Memory

Page 6 of 62

Deliverable D3.2

1 Executive Summary

The scope of MATILDA is to deliver a holistic framework for the design, development and
orchestration of 5G-ready applications and network services. In this context, a 5G-ready
application is represented by an application graph, which consists of chainable application
components. Moreover, a 5G-ready application includes in its description a set of network-
oriented requirements that can be utilized towards the production of slice requirements.
Such requirements are interpreted in appropriate slice intends to the MATILDA-enabled
telco provider. The slice intent can be then translated by a telco provider towards the
provision of an application-aware network slice that can optimally fulfil the application
needs.

This document covers the design and development of a set of Vertical Application
Orchestration (VAO) mechanisms, in order to realize the proper placement and
orchestration of 5G-ready applications over the created application-aware network slices.
The orchestration business logic of VAO should not be confused with the business logic of the
telco provider’ resources orchestration (VNFs, etc.) which is coordinated by the OSS.

The main components constituting the MATILDA VAO are: (i) the deployment and
execution manager that supports the production of optimal deployment plans as well as
manages the overall execution of the application, (ii) a set of data monitoring mechanisms
which collect feeds from network and application-level metrics, (iii) a data fusion, real-time
profiling and analytics toolkit, that produces advanced insights through machine learning
mechanisms and provide real-time profiling of the deployed components, application graphs
and VNFs, (iv) service discovery mechanisms for supporting registration and
consumption of application-oriented services following a service mesh approach, (v) a
context awareness engine in order to provide inference over the acquired data and support
runtime policies enforcement, and (vi) mechanisms supporting interaction among the VAO
and the OSS.

Page 7 of 62

Deliverable D3.2

2 Introduction

2.1 Scope of the Document

This deliverable aims at describing the design and implementation of the final release of the
MATILDA intelligent orchestration mechanisms. The mechanisms comprise the Vertical
Application Orchestration (hereinafter VAO) layer of the MATILDA architecture. According to
the MATILDA reference architecture [MATILDA – D1.1] a vertical application will make use of
two distinct orchestration loops which will be responsible for the entire lifecycle of the
application per se. These loops include the VAO loop undertaken by WP3 and the intra-OSS
loop undertaken by WP4. VAO is responsible to orchestrate the cloud-native application per
se in programmable resources that are provided by the telco-provider while the OSS is
responsible to provide the aforementioned resources along the prerequisite end-to-end
connectivity. Such connectivity is achieved through programmability of the telco resources.

The term “final release” is partially precise since VAO and OSS are continuously evolving in
order to include additional features that even super-exceed the initial (contractual) scope of
their existence. This is part of the “moving-target” problem that MATILDA had to face since
technology and standardization is evolving. However, the term “final” is precise as far as the
communication (i.e. signaling) between the VAO and the OSS is concerned, as the former can
currently express location-specific constraints to the latter. Furthermore, given that this
version of the deliverable regards a revised version of the document that is delivered close to
the end of the lifetime of the project, the provided specifications can be considered as final in
terms of evolution of the VAO and the OSS within the MATILDA 5G PPP project lifetime. The
main changes in the revised version regard the change in the presentation mode of the
deliverable from a diff-based methodology (compared to the initial version of the description
of the VAO mechanisms in D3.1) to a full-description-based methodology where the
implemented mechanisms in the VAO components are presented. A detailed specification of
the components comprising the VAO mechanisms is presented, including the interfaces
between them, as well as the interactions with external entities. The specification is
accompanied with additional information regarding the technologies used for the
development of the mechanisms.

As already mentioned, this document focuses on the description of the final design and
implementation of the intelligent orchestration mechanisms of the VAO that reside at the
Applications’ Orchestration Layer. In more detail, the document is structured as follows:
Chapter 3 is dedicated to the description of the deployment and execution manager
mechanisms. The Deployment and Execution Manager has been designed in such a way that
it abstracts the elasticity functionality and extracts the elasticity “business logic”
outside the core orchestration loop. In this way, a community of elastic-by-design
frameworks can be onboarded onto the repository.

Chapter 4 provides the description of the MATILDA Agent along the service discovery
mechanisms. The MATILDA Agent has extended functionality in order to be able to handle
security policies making use of state-of-the-art Linux kernel filters.

Chapter 5 describes the final release of the monitoring mechanisms. The orchestrator
contained within the Monitoring Mechanisms possesses the capability to report

Page 8 of 62

Deliverable D3.2

measurements regarding its internal actions (e.g. VM spawning). In this way the ability to
elaborate on the elasticity efficiency of the vertical applications is provided.

Chapter 6 provides details for the real-time profiling and analytics toolkit. The Profiling
and Analytics Toolkit has the ability to “virtually” tap on the aggregated monitoring metrics
and facilitate a set of analytics pipeline. Through this pipeline many analytics insights
regarding the running apps can be generated.

Chapter 7 describes the policies enforcement approaches and the complex event
processing mechanism. The characteristics of Policies enforcement and CEP Mechanisms
ensure that the component per se is horizontally scalable and thus a large amount of
rules can run simultaneously for many vertical applications.

Chapter 8 details the specification and implementation of the APIs created for the
communication with the OSS. The Southbound API which interconnects the OSS and the
VAO is capable of providing location-specific services such as the activation of a slice on a
specific territory.

Finally, Chapter 9 summarizes the results and concludes the deliverable.

Each chapter is divided into three major sections providing information about each
mechanism of the intelligent orchestration suite of MATILDA. A small introduction to the
chapter is followed by the first “Main components” sub-section which provides a short
presentation of the key components of each mechanism, while in the “Interfaces” sub-section
the overall (e.g. external) interfaces of the prototype are described. Finally, the “Baseline
technologies” sub-section discusses the baseline technologies, programming languages and
tools that have been used for the implementation of the corresponding mechanisms.

2.2 MATILDA End-to-End story

The advent of 5G networks is predicted as a leading factor in the fourth industrial
revolution impacting multiple vertical sectors and changing the way services are developed.
Nevertheless, the necessary integration between the digital systems that enable those
services and the network layer remains undefined and represents a big challenge.

MATILDA aims to fill this gap, providing the tools to foster and speed up the
extension/evolution of the cloud paradigm into the 5G ecosystem, intrinsically bridging the
vertical application and the network service domains. MATILDA comes up with a novel and
holistic approach for tackling the overall lifecycle of applications’ design, development,
deployment and orchestration in a 5G environment.

A set of novel concepts are introduced, including the design and development of 5G-ready
applications -based on cloud-native/microservice development principles- the separation of
concerns among the orchestration of the developed applications and the required network
services that support them, as well as the specification and management of network slices
that are application-aware and can lead to optimal application execution.

MATILDA follows a top-down approach where application design and development leads to
the instantiation of application aware-network slices, over which vertical industries’
applications can be optimally served. Different stakeholders are engaged in this process, with
clear separation of concerns among them.

Page 9 of 62

Deliverable D3.2

Still, MATILDA’s main target is the Telecom Provider, including Virtual Network
Operators (VNOs), Network as a Service (NaaS) companies and small players with innovative,
telecom-centric, business models. MATILDA aims to help them to satisfy their vertical
customers’ need, by creating a fruitful environment where network-intensive services can be
easily prototyped and quickly deployed into production.

The framework allows software developers to create applications following a simple and
conventional microservices-based approach where each component can be independently
orchestratable. Based on the conceptualization of metamodels (application component and
graph metamodels), they can formally declare information and requirements -in the form of
descriptor- that can be exploited during the deployment and operation over programmable
infrastructure.

Such information and requirements may regard capabilities, envisaged functionalities and
soft or hard constraints that have to be fulfilled and may be associated with an application
component or virtual link interconnecting two components within an application graph. The
produced application is considered as 5G-ready application.

MATILDA also encourages new business and wide collaboration by providing a Marketplace
where not only the created applications and components can be published but also Virtual
Network Functions (VNFs) and Network Services (NS) (in the form of enhanced descriptors).

Service Providers are able to adopt the developed 5G-ready applications (published to the
Marketplace or created internally) and specify policies and configuration options for their
optimal deployment and operation over programmable infrastructure. Based on the provided
application descriptor, service providers are able to design operational policies and formulate
a slice intent. These operational policies describe how the application components should
adapt their execution mode in runtime. On the other hand, the slice intent includes a set of
constraints that have to be fulfilled during the placement of the application and a set of
envisaged network functionalities that have to be provided. This information is used by the
Vertical Application Orchestrator to request the creation of an appropriate application-aware
network slice from the Telecommunication Infrastructure Provider.

While the instantiation and management of the application-aware network slice (including
the set of network functions) is realised by the Network and Computing Slice Deployment
Platform (managed by the telecommunications infrastructure provider), the deployment and
runtime management of an application is realised by the vertical application orchestrator
(managed by the service provider), following a service-mesh-oriented approach.

This recently introduced approach is adopted as a software management layer for
controlling and monitoring internal traffic in microservices-based applications. It consists of a
data and a control plane. The data plane consists of a set of intelligent proxies deployed
alongside the application software components supporting the provision of support/backing
services (e.g. service discovery, load balancing, health checking, telemetry). The control plane
manages the set of intelligent proxies based on distributed management techniques and
provides policy and configuration guidance for all the running support/backing services.
Policies definition for the activation and management of the set of required support/backing
services is realised based on a policies editor, while policies enforcement is realised based on
a rules-based management system. Advanced monitoring and analysis techniques are also
applied for extracting insights that can be proven useful for service providers.

Page 10 of 62

Deliverable D3.2

In order to instantiate and manage the application-aware network slice during the overall
lifecycle of the 5G-ready application, Telecommunication Infrastructure Providers rely on the
concept of network slice to fulfil the vertical application needs. A network slice is a logical
infrastructure partitioning allocated resources and optimized topology with appropriate
isolation, to serve a particular purpose of an application graph.

The Network and Computing Slice Deployment Platform includes an OSS/BSS system, a
NFVO and a resources manager for managing the set of deployed WIMs and VIMs. Based on
the interpretation of the provided slice intent, the required network management
mechanisms are activated and dynamically managed.

The Telecommunication Infrastructure Provider is responsible to realise the instantiation of
the slice over the programmable infrastructure. The reserved resources for this slice combine
both network and compute resources. A Telecommunication Infrastructure Provider may
deliver all these resources based on his own infrastructure or come into an agreement with a
Cloud Infrastructure Provider and acquire access to additional compute resources (e.g. in the
edge of the network).

These actions are realized in an agnostic way to application service providers. However,
through a set of open APIs, requests for adaptation of the slice configuration may be provided
by the Vertical Applications Orchestrator to the Network and Computing Slice Deployment
Platform.

The materialization of the network slice requires the instantiation of network services
(NSs) that are composed of virtual network functions (VNFs) chains. These NSs and VNFs can
imported into the telecommunications infrastructure provider’s catalogue from the MATILDA
marketplace.

A summary of the described overall lifecycle of an application created with the MATILDA
framework is represented in Figure 1 below, highlighting the interaction among the different
stakeholders and the usage of the metamodels.

The MATILDA reference architecture is divided in three distinct layers: namely, the 5G-
ready Applications Layer, the Applications’ Orchestration Layer and the Network and
Computing Slice Management Layer. Separation of concerns per layer is a basic principle
adhered towards the design of the overall architecture. The Applications Layer is oriented to
software developers, the 5G-ready Application Orchestration Layer is oriented to service
providers and the 5G Infrastructure Slicing and Management Layer is oriented to
telecommunications infrastructure providers.

The 5G-ready Applications Layer takes into account the design and development of 5G-
ready applications per industry vertical, along with the specification of the associated
networking requirements. The associated networking requirements per vertical industry are
tightly bound together with their respective 5G-ready applications’ graph, which defines the
business functions, as well as the service qualities of the individual application.

The Applications’ Orchestration Layer supports the dynamic on-the-fly deployment and
adaptation of the 5G-ready applications to its service requirements, by using a set of
optimisation schemes and intelligent algorithms to provide the needed resources across the
available multi-site programmable infrastructure.

Page 11 of 62

Deliverable D3.2

Figure 1: MATILDA workflow highlighting the different stakeholders and metamodels

The Programmable 5G Infrastructure Slicing and Management Layer is responsible for
setting up and managing the 5G-ready application deployment and operation over an
application-aware network slice. Network slice instantiation and management, network
services and mechanisms activation and orchestration as well as monitoring streams
management are realized. Such actions are triggered based on requests provided by the
Applications’ Orchestration Layer through the specification of Open APIs.

Page 12 of 62

Deliverable D3.2

3 Deployment and Execution Manager

The operational goal of the Deployment and Execution Manager is to facilitate the initial
deployment, the execution and the deprovision of the vertical components. Part of the
execution management business logic is the handling of the elasticity business logic.
Elasticity is the trait of a system to self-expand or shrink based on the undertaken load.
Elasticity is “technically interpreted” in a completely different way based on the nature of
the vertical component. For example, a stateless http component can scale under two
assumptions: a) there is a mechanism to spawn/destroy stateless workers based on the
demand and b) there is a ‘central’ component that can split and redirect the traffic to the
various workers (a.k.a. balancer). In a storage component the ‘high-level’ assumptions are the
same but the mechanism-insights are completely different. There is the assumption that a
mechanism will spawn/destroy storage elements but the balancing logic is completely
different.

The ability to support, inherently, scalability of http-load-balanced components was
addressed as horizontal scalability feature. However, the question that was raised was “how
other types of elastic components will be supported?”. Architecturally-wise there is no
easy answer to that, in the sense that each component/framework introduces its own
business logic during scale-in and scale-out.

The primary problem is that if the elasticity business logic is embedded in the core-business
logic of the VAO, each new elastic framework that will be supported will require the roll-out of
a new VAO release. That is definitely not an option for a commercial release. Instead, the most
elegant solution was to define an abstract API of an elasticity controller and alter the core
orchestrator logic in order to dynamically interact with an instance of this controller (see
Figure 2). In other words, the VAO’s core-orchestrator, besides the deployment and the
checking of the application and component status, has also to manage the elasticity controller.

The core-orchestrator must initialize the metadata for each elasticity-controller on the
deployment phase and update them in the scale in and out phases. For that, so, both the
backend and the core-orchestrator have some extra steps to do for the elastic components,
some of which are strictly coupled with the elasticity framework and some other with the
framework itself.

Another crucial question is “how does a developer implement an elasticity controller in
a MATILDA-certified way?” To do so, we followed a Service-Provider-Interface adapter
architecture1 (a.k.a. SPI) and ensured the elasticity logic was decoupled from both the
VAO’s backend as also the core-orchestrator, and thus introduced the elasticity-framework
module-template. As we need also to let the developer implement their elasticity-adapters
without the need to know the VAO’s architecture, we created some services and utilities
that act as middleware between the adapter and the backend/core-orchestrator. So,
having those services, that will be not explained in this deliverable, the developer needs to
implement two adapters, one that will be used from the backend and one that will be used
from the core-orchestrator.

1 https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

https://docs.oracle.com/javase/tutorial/sound/SPI-intro.html

Page 13 of 62

Deliverable D3.2

Figure 2: Elasticity Controller interaction with core orchestrator

The adapter that is consumed by the backend requires to implement the following methods:

 addComponentToDB(), which is responsible to add the elasticity controller to the
database. We are offering some services that are communicating with the database.

 getElasticityType(), which is responsible to give the backend the parameterization that
the controller may need.

 addElasticityController(), which is responsible to add the controller to the graph. For
this method we offer some utilities to the developer that modify the application
instance graph before the slice request.

 scaleOut(), which is responsible to return the workers that need to be deployed.
 scaleIn(), which is responsible to delete the undeployed workers from the database.

The adapter that is consumed by the core-orchestrator requires to implement the following
methods:

 initControllerMetadata(), which is responsible to initialize the controller metadata, if
there are any.

 getHealthyWorkers(), which returns all the healthy workers of the controller, either by
using the service that communicates with the platform’s discovery service or by a
custom way.

 updateElasticityController(), which is responsible to pass the appropriate changes to
the elasticity controller.

Page 14 of 62

Deliverable D3.2

 scaleOut(), which is responsible to calculate how many workers to add, request them
by the backend using the respective service and return the response to the
orchestrator.

 findWorkersForRemoval(), that calculates how many workers can be removed during
scale in phase, and returns all the workers that are qualified for removal.

 removeWorkersFromController(), which is responsible to communicate with the
elasticity controller and removes the qualified workers before the deletion of the VMs.

 postScaleInControllerMetadataClean(), that is responsible to update the controller
metadata and to do whatever else is needed after the deletion of the VMs.

We have used this extensibility mechanism to create elasticity controllers for two
frameworks, namely JPPF2 and Spark3.

3.1 Main components

A core component of the orchestrator is the Deployment and Execution Manager, which is
the component that is responsible to materialize a placement plan of a vertical
application. As already analysed in the architectural deliverable, each vertical application
consists of multiple components that formulate an application graph. The application graph
and the components adhere to a specific metamodel. A vertical application provider is
introducing some constraints at the component/application level, which are submitted to the
MATILDA-enabled telco provider through the Northbound API that is described in Section 8.
The telco provider is interpreting the constraints to a constraint-satisfaction problem. Upon
the identification of a solution the telco provider is creating a slice which facilitates the
requirements of the provider.

The slice per se is sent back to the orchestrator. The slice contains placement instructions,
i.e. where each component should be placed. The deployment manager is responsible to
trigger the VIMs that are included in the slice response. Beyond spawning the VMs the
Deployment and Execution manager is responsible to monitor the proper instantiation of the
vertical components within the VM. This is practically performed by a component that is
addressed as MATILDA Agent and is loaded in each VM that is spawned within the telco
provider. The Agent is responsible to report on the success boot sequence of the vertical
components and even react on managed exceptions (e.g., VM is not available at the moment,
component is loaded but health check is failing).

Therefore, the main components of the “Deployment and Execution Manager” are the
following:

 Slice Interpreter: The interpreter is responsible to parse the response of the telco
provider and infer the proper VIMs that should be used in order for deployment to take
place.

 VIM client: This component enables the execution of the VIM-related commands that
are provided to the MATILDA-enhanced OSS of the telco provider.

 MATILDA Agent: The agent is responsible to monitor the boot sequence of the vertical
application. Moreover, it is responsible to activate the monitoring probe of the VM.

2 https://www.jppf.org/
3 https://spark.apache.org/

https://www.jppf.org/
https://spark.apache.org/

Page 15 of 62

Deliverable D3.2

 Service Discovery Server (SDS): The server keeps track of the operational state of all
vertical applications and their components. It acts as a cache memory; thus, keeping
track of the state and the configuration of each VM.

 Execution Manager Control loop: Each orchestration engine spawns one ‘infinite’
control loop per deployed application. This control loop is responsible for tracing the
execution of all components and react on possible errors.

 Elasticity Controller: It is responsible to handle the scale-in/out operations as
analysed above

The components mentioned above interact using the interfaces that are presented below.

3.2 Interfaces

Figure 3 depicts the basic interfaces among the components of the Deployment and
Execution Manager.

Figure 3: Components of Deployment and Execution Manager

As it is depicted, the Slice Interpreter is interacting with the Control Loop in order to trigger
the initial deployment of the vertical components that comprise the vertical application. The
Control Loop will trigger a parallel deployment of the vertical components. The term parallel
refers to the VM spawning process that will host the vertical components and not the
component booting process. The components must be booted in such an order that each
component should guarantee that its direct dependencies are available. i.e. booted and

Page 16 of 62

Deliverable D3.2

operational. This business logic is implemented with the MATILDA Agent and is implemented
using an interaction with the SDS. This process will be analysed in the next section.

The Control Loop component is interacting with the VIM client in order to trigger the VM
spawning commands. The VIM client is able to interact with multiple VIMs that are proxied
by the (MATILDA-enabled) OSS layer. The OSS is proxying the VIM command and the actual
VM is spawned. During the VM spawning a specific initialization script, which is passed as an
argument to the VIM, is executed in order to perform the initial configuration of the VM.

Initial configuration is a multi-step process according to which some executable
prerequisites are downloaded. These include a) an SDS client, which is Consul in our case; b)
the monitoring probe; c) a container execution engine and d) the MATILDA Agent. The SDS
client is required in order to interact with the SDS server that is installed in the vertical
orchestrator. The monitoring probe will be used by the monitoring and analytics components
that are analysed below and the container execution engine is required in order to abstract
the way the component is bundled. Finally, the Agent is responsible for the lifecycle
management of the component per se, i.e. boot/pause/destroy.

3.3 Baseline technologies

The Deployment and Execution Manager is built using the Spring Framework [Spring]. The
reason for that is that Spring offers a tool suite for production-grade development of
microservice-based solutions. As such, many aspects of development, such as development of
RESTful interfaces, implementation of high concurrent business logic, uniform reporting and
analytics during operation, etc., are considered granted. On the other hand, the MATILDA
Agent is developed using pure Java 8 Compact Profile [Compact-Profile] in order to make use
of the interoperability aspects of Java without sacrificing the minimum footprint that an Agent
should have. Finally, the web interface that triggers the deployment of a graph is developed
using React JS [React-JS], as also depicted in Figure 4.

Figure 4: Triggering a deployment through MATILDA web interface

Page 17 of 62

Deliverable D3.2

4 MATILDA Agent and Service Discovery Mechanisms

The MATILDA Agent’s main duty is to handle the signalling (at layer 7) between the
orchestrator and the core platform. Moreover, it contains functionality in order to support
efficient security policy enforcement at the component level. Two crucial questions that
are raised are: a) why at the component level? and b) what do we mean with the term
efficient?

One of the traditional issues in security is the policy enforcement of perimeter security
rules. This practically relates to the problem of translating a specific allowance/dropping
policy to tangible packet filtering business logic. Such business logic can be provided by the
telco provider (through proper programmability of the OSS layer) or through the sidecar of
the vertical components. Which is the proper layer depends on the circumstances and the
nature of cyber threats. MATILDA provides the ability to deploy security VNFs on the telco
side in order to cope with packet filtering/dropping logic but also allows for the sidecar to
perform such dropping also.

A generic kernel-oriented method is used which is totally IaaS-agnostic and highly
efficient. As depicted, MATILDA offers a Perimeter Security Policy Editor which is used to
provide allowance/dropping packet policies based on an abstract format. These rules are
translated in specific scripts that are directly executable by the kernel of the operating
system that is hosting the docker container of the component. This executable is formatted as
an extended-BPF (a.k.a. eBPF) [eBPF] script that allows extremely efficient filtering of
incoming packets.

Figure 5: Perimeter security business logic

The need for fast network packet inspection and monitoring was obvious in early
versions of UNIX with networking support. In order to gain speed and avoid unnecessary
copying with packet contents between kernel and userspace, the notion of a kernel
packet filter agent was utilised [eBPF]. The solution adopted by Linux is referred as
Berkeley Packet Filter (BPF). This agent allows a userspace program to attach a filter program

Page 18 of 62

Deliverable D3.2

onto a socket and limit certain dataflows coming through the socket in a fast and effective
way. Linux BPF originally provided as set of instructions that could be used to program a
filter: this is nowadays referred to as classic BPF (cBPF).

Later a new, more flexible, and richer set was introduced, which is referred to as extended
BPF (eBPF). While originally designed for network packet filtering, nowadays Linux BPF is
used in many other areas, including network security. eBPF allows users to drop, reflect or
redirect packets before they have a socket buffer metadata structure added to the
packet. This leads to a performance improvement of about 4-5 times.

MATILDA allows a) the creation of the eBPF script through a plain editor; b) the Loading of
the script into the kernel and creating necessary eBPF-maps and c) the attachment of the
loaded program to a system.

The MATILDA UI offers the aforementioned Perimeter Security Policy Editor which is
used to provide allowance/dropping packet policies based on eBPF (see Figure 6). As already
mentioned, these rules are translated in specific scripts that are directly executable by the
kernel of the operating system that is hosting the docker container of the component. This
executable is formatted in eBPF script and it is extremely efficient.

Figure 6: Adding a packet filtering rule

This approach also provides great flexibility, as application-specific firewall rules can be set
by each application component individually (see Figure 7) and without requiring root access.
These changes are performed instantly through the MATILDA UI.

Page 19 of 62

Deliverable D3.2

Figure 7: Enabling Security Agent extensions for a component through the UI

The result of applying such a rule of a component is instantly realised, and in this case the
blacklisting of an IP address is performed in a very efficient way that is suitable for both cloud
and edge resources (see Figure 8).

Figure 8: Packet filtering activation example

4.1 Main components

As already mentioned, when a vertical application is deployed to a MATILDA enabled
provider each component is associated with a VM and each VM is spawned simultaneously.
The reason for that ‘parallel’ spawning is that the VM booting time is a significant portion of
the total time that is required for a vertical component to be operational. Upon VM spawning
there are 7 discrete steps that have to be executed in order for the vertical component to be
operational.

Page 20 of 62

Deliverable D3.2

Figure 9: Lifecycle of MATILDA Agent

These steps are graphically depicted in Figure 9 and will be explained in detail:

Step 1 – Agent booted: During this step the small-footprint Agent is loaded. That verifies
that the VM boot process has completed successfully and the initialization script (init.d) that
was passed as an argument from the Deployment Manager was valid.

Step 2 – Check executable prerequisites: During this step the Agent tries to resolve if
three prerequisite executables are already installed in the VM. These are a) the monitoring
probe (i.e. Netdata), b) the Container Engine (i.e. docker-engine) and c) the Service Discovery
Client (i.e. Consul). If these prerequisites are not met, the Agent terminates abnormally. If they
are met, the component is registering to the SDS server.

Step 3 – Fetch Image of Vertical Component: During this step the actual transfer of the
executable of the vertical component is performed. In order to cope with the problem of
vendor lock-in format of the executable the container format has been chosen.

Step 4 – Block until dependencies are resolved: During this step the Agent is trying to
identify what is the operational state of the vertical components that are direct dependencies
to the component that is bound to the Agent. To do so, the Agent is not contacting other
Agents directly because this would be inefficient and problematic. Instead, it queries the SDS
server to fetch the latest state of each direct dependency. If the operational state of all
dependencies is not satisfied, then the Agent blocks.

Step 5 – Spawn container of Vertical Component: When all dependencies are
operational, the Agent is triggering the execution of the pulled container.

Step 6 – Register component to SDS when health-check passes: Upon triggering of the
execution, the Agent is polling the service in order to infer whether or not the booted service
is actually running. If this ‘health-check’ is successful, then the Agent notifies the SDS that the
component is up and running.

Step 7 – Register to a pub/sub queue: During this step the Agent is polling a pub/sub
system for specific commands that may be issued by the Deployment and Execution Manager.
The commands that are rather crucial are the perimeter security commands that are
implemented using the BPF technology.

Figure 10 provides indicative agent states during one deployment in a telco provider.

Page 21 of 62

Deliverable D3.2

Figure 10: Agent steps

As inferred from the steps above, the Service Discovery Server is a rather crucial component
of the architecture, since it acts as a Key-Value store which is accessible by all Agents that are
booted. In this store, all aspects regarding Agent arguments, vertical component dependencies
and docker image location are provided. Figure 11 illustrates indicative data that are
persisted in the SDS during one deployment.

Figure 11: Agent information stored in the SDS

4.2 Interfaces

The interfaces of the Agent and the SDS are already described in Section 3 and depicted in
Figure 3. It should be noted that the Agent is architected in such a way that no synchronous
API call is exposed to it. The reason for that is that most of the times Agents will be operating
behind NAT. Hence all communications that have to be performed are undertaken by the SDS.

Page 22 of 62

Deliverable D3.2

4.3 Baseline technologies

The technology base of the SDS is Consul. Consul is a distributed service mesh to connect,
secure, and configure services across any runtime platform and public or private cloud. The
selected SDS provides a full featured control plane with service discovery, configuration, and
segmentation functionality. Each of these features can be used individually as needed, or they
can be used together to build a full-service mesh. The key features of Consul are:

 Service Discovery: Clients of Consul can register a service, such as API or MySQL, and
other clients can use Consul to discover providers of a given service. Using either DNS
or HTTP, applications can easily find the services they depend upon.

 Health Checking: Consul clients can provide any number of health checks, either
associated with a given service ("is the webserver returning 200 OK"), or with the local
node ("is memory utilization below 90%"). This information can be used by an operator
to monitor cluster health, and it is used by the service discovery components to route
traffic away from unhealthy hosts.

 KV Store: Applications can make use of Consul's hierarchical key/value store for any
number of purposes, including dynamic configuration, feature flagging, coordination,
leader election, and more. The simple HTTP API makes it easy to use.

 Secure Service Communication: Consul can generate and distribute TLS certificates
for services to establish mutual TLS connections. Intentions can be used to define which
services are allowed to communicate. Service segmentation can be easily managed with
intentions that can be changed in real time instead of using complex network topologies
and static firewall rules.

 Multi Datacentre: Consul supports multiple datacentres out of the box. This means
users of Consul do not have to worry about building additional layers of abstraction to
grow to multiple regions.

Page 23 of 62

Deliverable D3.2

5 Monitoring Mechanisms

One of the major challenges of the MATILDA VAO was the unification of the monitoring
streams that are generated from the operation of the various components/layers. These
metrics are categorized in the following groups:

a) Infrastructure-benchmarking: Such metrics quantify the quality of the provided IaaS
resources (from the telco-provider) during the slice creation. They refer to CPU speed,
amount of memory, storage speed (IOs per second), etc. These measurements are performed
by the VAO Agent prior to the deployment of a vertical component.

b) Probable-Vertical Component Runtime metrics: Such metrics quantify the several
execution parameters that can be measured passively, i.e. through a probe. Such probes
are installed and parameterized by the VAO Agent.

c) Vertical Component Runtime exportable metrics: Such metrics quantify the several
execution parameters that are exposed by the Vertical component per se. The export
process must follow guidelines. To do so, exporter libraries for Java and Python have been
developed in order for developers to be able to follow the norms.

d) Communication Service Provider Metrics: These are metrics that are measured
within the administrative zone of the OSS and they are performed by specific VNFs that are
dynamically deployed.

As is easily inferred, these metrics refer to both VAO and OSS. As such, the unification
process is logical and not physical. This is imperative for political reasons (i.e., non-
technical). After extensive discussions within the consortium regarding this ‘unification issue’,
it turned out that telco providers are extremely reluctant to expose specific types of OSS-
monitoring streams outside of their administrative boundaries. This is the reason why two
Metric aggregation platforms have been setup (Prometheus) in order to contain the full set of
measurements.

5.1 MATILDA Overall monitoring solution

The MATILDA monitoring solution addresses multi-site network infrastructure
deployments and performs metrics acquisition from a variety of domains. Specifically, the
resources to be monitored fall in one of the following domains:

 NFV Infrastructure (NFVI) resources that comprise of physical and virtual compute,
network and storage resources

 SDN-enabled elements, including physical and virtual resources
 Physical devices that do not belong to the previous categories, such as non-SDN

compliant network routers and switches for which we want to capture monitoring
information

 Linux containers deployed to run application components that form the 5G-ready
vertical applications.

The monitoring system is responsible for the management of the metrics captured from the
various infrastructure components, the management of alerts and events based on these
metrics, and the visualization of the available data.

Page 24 of 62

Deliverable D3.2

Furthermore, the monitoring mechanisms can operate in passive or active manner. Passive
monitoring in MATILDA refers to the capture of service and network metrics locally at the
application or VNF component level. Example of such metrics are CPU utilization, RAM usage,
etc. On the other hand, the active monitoring provides QoS/QoE measurements based on the
injected traffic by the monitoring application itself. The simplest of such monitoring tools in
MATILDA would be ICMP (Internet Control Message Protocol) PING request/reply
mechanism that enables measuring the RTT (round-trip time) between application
components or application component and UE.

In Figure 12, the general architecture regarding application component monitoring is
presented. The MATILDA monitoring solution is based on the Prometheus monitoring tool
[Prometheus] which will collect and aggregate the monitoring data from all monitoring
systems (i.e. active/passive KPIs at the application component and VNF KPIs from the OSM).

The logical entities forming MATILDA Prometheus-based architecture are as follows:

 Data collection:

 Prometheus Server with Collector engine as the core module of Prometheus
framework that is responsible for polling the measured data from monitoring
targets.

 Prometheus Push Gateway module that will allow the MATILDA framework to
push the data from monitored components when the components cannot be
polled directly from Prometheus (e.g. , the component is behind the FW/NAT).

 Prometheus Alerts module that support triggering and sending out alerts via mail
or various other services (e.g. Slack, Telegram, etc.) based on the predefined
application or network KPI threshold.

 Data sources:

 Netdata [Netdata] agent on each application component that provides passive
monitoring KPIs at the VM/Container level. Currently, the plan is to integrate the
Netdata agent in the base VM image hosting the application component.

 qMON agent [qMON] on each application component which enables active
monitoring mechanisms such as ping and download/upload bandwidth capacity
measurements. Currently, the qMON agent can operate at the application
component level as a separate Docker container.

Page 25 of 62

Deliverable D3.2

Figure 12: Prometheus-based MATILDA monitoring architecture supporting active and passive
measurement scenarios

5.1.1 Application component monitoring

A crucial task when defining the Monitoring and Analytics architecture is the identification
of metrics that need to be collected from the project’s infrastructure, including the NFVI, the
physical infrastructure devices apart from the NFVI and the deployed NSs, VNFs and
containers. The table below summarizes a list of such metrics, which are “generic” and are
targeted to serve measurements tailored to the key drivers of MATILDA. This list is meant to
be continuously updated throughout the project in order to align with the technical
capabilities and requirements of the components under development and the use cases which
are implemented.

Table 1: List of metrics to be collected through MATILDA monitoring solution

Metric Unit Category Method/data source

CPU utilization
percent
%

Host node and VNF/Container
generic metrics

Passive/netdata

RAM allocated MB
Host node and VNF/Container
generic metrics

Passive/netdata

RAM available MB
Host node and VNF/Container
generic metrics

Passive/netdata

Page 26 of 62

Deliverable D3.2

Metric Unit Category Method/data source

Network interface in/out
bitrate

Mbps
Host node and VNF/Container
generic metrics

Passive/netdata

Network interface in/out
packet rate

pps
Host node and VNF/Container
generic metrics

Passive/netdata

Disk read/write rate MB/s
Host node and VNF/Container
generic metrics

Passive/netdata

Port in/out bit rate Mbps Network generic metrics Passive/netdata

Port in/out packet rate pps Network generic metrics Passive/netdata

Port in/out packet drops rate pps Network generic metrics Passive/netdata

VM provisioning latency Msec Service quality metrics (speed) Passive/

Packet rount-trip time (RTT) ms Service quality metrics (speed) Active/qMON

Packet delay variation (jitter) ms Service quality metrics (speed) Active/qMON

Download throughput kbps Service quality metrics (capacity) Active/qMON

Upload throughput kbps Service quality metrics (capacity) Active/qMON

Packet loss rate pps Service quality metrics (accuracy) Active/qMON

Application component monitoring - passive

The Netdata agent can expose these metrics via local HTTP/HTTPS server on each
application component, so the data can be polled on the predefined time intervals. The
example KPI exposed on the application component is shown below:

 CPU Utilization

netdata_services_cpu_percent_average{chart="services.cpu”, family="cpu", dimension="apache2",
instance="netdata-collector"} 0.0000000 1535625324000

Application component monitoring - active

On the other hand, the qMON agent typically operates as a monitoring client that uses
simple push mechanism to send monitoring data to the Prometheus. In the following
paragraphs, the sample forms of measured metrics are shown as they are exposed through
Prometheus Push Gateway.

 Packet round-trip time (RTT)

inin_ping_client_lat{aliasHash="57b34",client_ip="-1",client_ipv4_for_geoloc="-1",client_version="5.0.51-iptv-
dev",collector_host="qoe-
volta",geohash="u25j6r0",gps_client_loc_hash="true",hash="57b34bad5040038c1edf12ab694cb306f1f1b556",ip
_version="4",os_name="Ubuntu",os_version="14.04",seq_no="0",status="Success",target_ip="8.8.4.4",test_type="
ping_test"} 45.96152

Page 27 of 62

Deliverable D3.2

 Download/upload throughput

inin_iperf_duration{aliasHash="a0adb",client_ip="10.0.151.111",client_ipv4_for_geoloc="10.0.151.111",client_ve
rsion="5.0.51-docker",collector_host="qoe-
volta",direction="DL",geohash="7zzzzzzzzzzz",gps_client_loc_hash="false",hash="a0adbd5fc2c39485bf21fe2f3f1
21408d19a824f",ip_version="4",iperf_clone="true",os_name="Ubuntu",os_version="16.04",status="Success",targ
et_ip="10.0.151.122",test_type="iperf_test"} 15.0002

 WEB MOS

inin_web_web1_mos{aliasHash="smevo",client_ip="-1",client_ipv4_for_geoloc="-
1",client_version="4.3.1lk",collector_host="kette",gps_client_loc_hash="false",hash="smevosdrpi",ip_version="4",
os_name="debian",os_version="8.0",target_url="www.google.com",test_type="web_test",web1_status="Success"}
4.86

The qMON-based MATILDA architecture will allow two types of active measurements:

 Using a reference measurement server that supports all types of measurements and
represents the entity outside the scope of MATILDA framework (Figure 13). A special
case of such architecture would put the UE in place of the reference server, and in this
way end-to-end network service KPIs can be measured (e.g., SLA Monitoring for the
PPDR Use Case).

 Between application components in single or multi-IaaS environment that will enable
real-time network KPIs that can be used to trigger rules regarding network service
(Figure 14).

Figure 13: MATILDA Active network monitoring with reference server or UE

Page 28 of 62

Deliverable D3.2

Figure 14: MATILDA Active network monitoring between application components

5.1.2 Network Slice monitoring

Network slice monitoring will provide metrics based on two operations: NFVO/OSM metric
collection for monitoring of mainly compute resources consumed by VNFs and qMON NFV-
based metric collection for monitoring network services and/or end-to-end services.

5.1.3 NFVO/OSM metric collection

The hardware resources consumed by each of the VNF instances should be monitored in
order to measure its performance. For this matter, the NFVO (OSM) features a Kafka bus for
asynchronous communications, performance/fault management features and an NBI exposing
a unified REST API [OSM]. This architecture is shown in Figure 15.

Page 29 of 62

Deliverable D3.2

Figure 15: Basic OSM monitoring architecture

Once deployed the VNFs in the VIMs throughout the NFVI (utilizing Openstack with Gnocchi
service to support these capabilities), the metrics that are going to be exposed at the Kafka
bus must be exported per VNF and VDU (VM). The supported metrics are described in Table 2.

Table 2: Supported metrics by the OSM Kafka Bus

Metric Unit Category

cpu_utilization percent % Host node and VNF/Container generic metrics

average_memory_utilization MB Host node and VNF/Container generic metrics

disk_read_ops ops Host node and VNF/Container generic metrics

disk_write_ops ops Host node and VNF/Container generic metrics

disk_read_bytes bps Network generic metrics

disk_write_bytes pps Network generic metrics

packets_dropped pps Network generic metrics

packets_received pps Service quality metrics (speed)

packets_sent pps Service quality metrics (speed)

The architecture in Figure 16 provides information on how OSM can be monitored. Given
the need to receive monitoring information for the NSs and the slices, the “OSM Performance
Management” is under extension to use the MATILDA Prometheus. Monitoring information
regarding the VNFs is not relevant for the MATILDA OSS, as it is not aware of how the Telco

Page 30 of 62

Deliverable D3.2

Provider instantiated the slice. Therefore, a new module is under development to aggregate
the VNF monitoring information into NS and NS monitoring into slice monitoring that is
indeed more useful for calculating the overall 5G-ready application monitoring.

Figure 16: Integrated monitoring environment

Main components

As depicted in Figure 17, the components comprising the Monitoring platform are the Alert
Engine, the Notification Engine, the Persistence Manager, the Storage Database, the
Aggregation Manager and the Visualisation component. The Analytics module as cited in the
figure above, Figure 16, consumes and analyses information from the monitoring platform to
identify trends and meaningful patterns. Additional information is provided in the next
section of this report.

The Alerting engine is responsible for the management of alerts (creation, deletion). For the
management of alerts, the Alert Engine should communicate with the Orchestration layer
components. The Notification Engine should allow the different orchestration-level
components to receive notification messages of events by offering the necessary interfaces for
subscribers to receive events of interest. For generating notifications on events, the Alert
Engine is evaluating the metrics received against the created alerts and upon an event
occurrence, the Notification Engine distributes notifications to the subscribers of the specific
event.

The Aggregation Manager is responsible for collecting metrics from different sources and
aggregating them over a specific timeframe exploiting several statistical functions or other
filtering options. Data gathered from the Aggregation Manager will be sent to the Persistence
Manager to store selected collected metrics and alerts at the Storage Database for preserving
historical data required for off-line analysis and future reference. Finally, the Visualization
component will offer a dashboard for the visualization of captured metrics and created alerts.

Page 31 of 62

Deliverable D3.2

Figure 17: Monitoring solution high-level architecture

5.1.4 qMON NFV-based monitoring

Additional to NFVO/OSM metric collection the qMON NFV-based monitoring will provide
network KPIs for the network service monitoring on the end-to-end principle. The qMON
NFV-based solution will extend the overall MATILDA active and passive monitoring presented
in chapter 5.2 with the capabilities for active network service monitoring as shown in the
figure below.

Figure 18: MATILDA monitoring architecture with integrated qMON NFV-based solution

Page 32 of 62

Deliverable D3.2

Main Components

The qMON NFV-based solution consists of the following modules:

 qMON VNF Agent,
 qMON VNF Server,
 qMON Collector.

The qMON VNF Agent and qMON VNF Server are OSM-compliant VNFs which are
orchestrated through the OSM on-demand when the request for active monitoring comes
from MATILDA application orchestrator through the slice intent mechanism and is then
forwarded to the OSS as presented in the following figure.

Figure 19: MATILDA monitoring deployment steps

The qMON VNF Agent represents the monitoring client while the qMON VNF Server
provides the measurement endpoint (server) for monitoring clients. Single qMON VNF Server
can provide measurement endpoint to multiple qMON VNF Agents in parallel.

The qMON Collector acts as a centralized qMON results collection endpoint to which the
qMON VNF Agents upload measurements results via proprietary qMON protocol. At the same
time, it acts as the actual data source (Prometheus target) for MATILDA-integrated
Prometheus. qMON Collector is not orchestrated though MATILDA or OSS/OSM but is rather
treated as a requirement for the infrastructure provider that supports network service
monitoring.

Such an architecture allows various monitoring scenarios, e.g. including monitoring links
between different IaaS hosts (Figure 20) or end-to-end network service monitoring (Figure 21).

Page 33 of 62

Deliverable D3.2

Figure 20: MATILDA qMON NFV-based active monitoring links between hosts or between IaaS

As shown in the figure, such a deployment architecture allows measurements of different
network segments, e.g. between network core (i.e. EPC) and access (i.e. ENB) where qMON
VNF Server would be placed in IaaS along with ENB and the qMON VNF Server in IaaS where
the EPC network components are deployed.

Figure 21: MATILDA qMON NFV-based active end-to-end network service monitoring

Page 34 of 62

Deliverable D3.2

The figure above shows how the qMON NFV-based monitoring solution can be used to
provide end-to-end service monitoring. Similar as in previous case, the qMON VNF Agents and
qMON VNF Server are deployed on-demand through slice intent mechanism requesting
network service monitoring from the OSS/OSM. Additionally, the qMON UE4 (i.e. Android
qMON application) acts as a PNF (qMON PNF Agent) that can measure end-to-end network
service KPIs between UE and qMON VNF Server placed somewhere in the core IaaS. This way,
the general end-to-end network service KPIs can also be made available through qMON
Collector where the results are collected from qMON VNF Agents and qMON UE. This scenario
provides a mechanism to support SLA monitoring that is required by the PPDR use case.

Additionally, as qMON UE provides also physical network layer KPIs (e.g. radio) and since
the qMON NFV-based solution should be treated as part of the infrastructure provider/telco,
detailed radio KPIs (e.g. RSRP, RSRQ, EARFCN, APN etc.) are available to infrastructure
provider/telco along with general end-to-end network service KPIs. The scenario is presented
in the following figure.

Figure 22: MATILDA qMON NFV-based active end-to-end network service monitoring with detailed telco KPIs

The telco provider is not necessarily willing to expose all the detailed radio KPIs. The
collected data is controlled by the telco but can be made available also to the MATILDA-
integrated Prometheus since the data is still collected by the qMON Collector.

4 qMON UE is not part of MATILDA orchestration.

Page 35 of 62

Deliverable D3.2

Network service KPIs

The general network service KPIs collected by qMON NFV-based solution are basically the
same as presented in the overall MATILDA monitoring solution with the means to ensure the
MATILDA vertical application orchestrator (VAO) can use monitoring data in both cases, i.e.
application component monitoring and network service monitoring. Available KPIs are not
limited to this list but can be extended to provide advanced scenarios for different use cases.

Table 3: MATILDA qMON NFV-based active monitoring KPIs

Metric Unit Category Method/data source

Packet round trip time
(RTT)

ms
Network service quality metrics
(speed)

Active/qMON VNF

Packet delay variation
(jitter)

ms
Network service quality metrics
(speed)

Active/ qMON VNF

Download throughput kbps
Network service quality metrics
(capacity)

Active/ qMON VNF

Upload throughput kbps
Network service quality metrics
(capacity)

Active/ qMON VNF

Packet loss rate pps
Network service quality metrics
(accuracy)

Active/ qMON VNF

The following example for “Packet RTT” metric is presented in Prometheus data format to
show how the qMON collected data is to be used by the MATILDA VAO.

inin_ping_rtt_ms{aliasHash="cade0",client_ip=”10.0.151.102",client_ipv4_for_geoloc="",client_version="4.2.9lk",colle
ctor_host="qoe-
volta",gps_client_loc_hash="false",hash="cade069207747d2f016e5eecf3f253b7083f8ddb",ip_version="4",os_name="
Ubuntu",os_version="14.04",seq_no="0",status="Success",target_ip="193.2.1.66",test_type="ping_test"} 2.3

Important parameters:

 client_ip: qMON Client VNF IP (e.g. Openstack data plane IP of the qMON Agent VNF);
 target_ip: configured end point IP to which RTT is measured (e.g. qMON Server VNF on

the same Openstack data plane allowing communication between qMON Agent VNF and
qMON Server VNF);

 test_type: “packet delay” is identified as “ping_test” test type, will be different for other
test types, e.g. DL/UL;

 hash: unique ID for the qMON Client VNF to be able to register to and get the
configuration from the qMON Management Server;

 value: round-trip time (RTT) between the client and server (e.g. qMON Client VNF and
qMON Server VNF).

Page 36 of 62

Deliverable D3.2

Infrastructure provider/telco network KPIs

As already mentioned above, the qMON NFV-based solution can provide additional physical
layer KPIs measured by the qMON UE. Typically, the infrastructure provider/telco will use
this data for internal monitoring architecture and quality assurance scenarios, however the
presented qMON NFV-based monitoring architecture allows this data also being exposed to
the MATILDA monitoring platform if needed. The metrics collected are presented in the
following table. The list is not limited to these KPIs and can be extended to support various
use case requirements.

Table 4: MATILDA qMON UE collection of radio KPIs

Metric Unit Category Method/data source

RSRP dBm
Radio network quality metrics
(signal strength)

Active/qMON UE

RSRQ dB
Radio network quality metrics
(signal strength)

Active/ qMON UE

SINR dB
Radio network quality metric
(signal strength)

Active/ qMON UE

EARFCN
LTE frequency
band number

Radio network generic metric Active/ qMON UE

Transmit Power (Tx Power) pps
Radio network quality metric
(signal strength)

Active/ qMON UE

LTE Channel Bandwidth MHz Radio network generic metric Active/ qMON UE

APN APN name Radio network generic metric Active/ qMON UE

Carrier Aggregation State on/off Radio network generic metric Active/ qMON UE

Implementation requirements

The infrastructure provider/telco should support the following requirements:

 OSS should support provisioning NFV-based network service monitoring through the
OSM when the request for network service monitoring comes from MATILDA VAO.

 qMON Collector node treated as part of OSS/telco infrastructure (it must be present if
the network service monitoring is supported).

 MATILDA Prometheus pulls the data from qMON Collector node which acts as a
standard Prometheus target.

 Communication on port 443 must be allowed between qMON VNF Agent/UE and qMON
Collector node.

 Communication to the internet must be allowed from qMON VNF Agent/UE to ensure
that they can register to and get configuration from qMON Management Server5.

5 qMON Management Server is the integral part of the qMON Monitoring Solution. It runs in ININ’s cloud and is
not part of the MATILDA orchestration.

Page 37 of 62

Deliverable D3.2

5.2 Baseline technologies

VNF monitoring

Monitoring of the VNFs can be done in two ways. One would be getting the needed metrics
from the host system on which the VNFs will run or even better from the Virtual
Infrastructure Manager (i.e. OpenStack in the case of MATILDA). Monitoring is inherently
supported in Openstack by several integrated components such as Ceilometer, Gnocchi, Aodh
projects. Respectively, the aforementioned components provide means for collecting
utilization data of the physical and virtual resources, persistent storage of historical data in
multi-tenant time-series database, alarming and action triggering based on pre-defined
policies. Alternatively, the Monasca project is a multi-tenant, highly scalable, performant,
fault-tolerant monitoring-as-a-service solution, which uses a REST API for high-speed metrics
processing and querying and has a streaming alarm engine and notification engine.
Integration of such a system and Prometheus platform would then be necessary. Openstack
and the integrated monitoring components listed above are being used for VNF monitoring.

Container monitoring

A Linux container is a technology that allows a group of processes to be isolated from the
host system that they run on. Containers behave like virtual machines. To the outside world,
they can look like their own complete system. However, and unlike a virtual machine, rather
than creating a whole virtual operating system, containers replicate only the individual
components they need in order to operate. The key difference between containers and VMs is
that while the hypervisor abstracts an entire device, containers just abstract the operating
system kernel. The underlying technologies that make this functionality possible are mainly
namespaces and Cgroups.

Specifically, Docker creates a set of namespaces for each container. These namespaces
provide a layer of isolation. Each aspect of a container runs in a separate namespace and its
access is limited to that namespace. The namespaces used are for process isolation, managing
network interfaces, IPC resources, filesystem mount points, kernel and version identifiers.

Docker also makes use of kernel control groups for resource allocation and isolation. A
Cgroup limits an application to a specific set of resources. Control groups allow Docker Engine
to share available hardware resources to containers and optionally enforce limits and
constraints. Cgroups used by Docker Engine deal with allocation and management of memory,
huge pages, CPU, block I/O, network traffic control, device access.

It becomes evident that there is a wealth of performance and utilization metrics that can be
collected from containers. The MATILDA framework uses open source software to integrate
Docker container metrics with the Prometheus platform.

Continuous network performance monitoring

As presented, MATILDA monitoring framework can be extended with the qMON agent
integrated as a VNF providing network-level KPIs in the same manner as at the application
component level. Furthermore, if the radio network KPIs (i.e. RSSP, RSSQ, RSSI, SINR, etc.) are
to be monitored, the qMON agent in the role of PNF can be implemented. Gathered data can be
used by the communications infrastructure provider for continuous network service and slice
monitoring or, if supported, even by the slice orchestrator to get the real-time network KPIs

Page 38 of 62

Deliverable D3.2

(e.g. round-trip time, download/upload capacity) of a network segment, network slice or end-
to-end network service.

Figure 23: Continuous network performance monitoring

MATILDA Monitoring Solution

The implementation is based on the Prometheus white-box monitoring platform, which is
an open-source system monitoring and alerting toolkit. Prometheus uses a time-series
database based on LevelDB, an alert management system, to facilitate the evaluation of alert
conditions, with a series of system metrics exporters acting as agents for the monitored
systems. A key aspect in the data analysis is the Prometheus specific query language, PromQL,
which facilitates high performance time-series data aggregation. Prometheus supports both
push and pull based data collection, strongly encouraging pull strategy using agents. Agents
are being deployed at the monitored subject or at the host it resides in. The agents expose the
metrics as APIs, which then can be requested by the Prometheus server at a fixed time period.

Page 39 of 62

Deliverable D3.2

6 Data Fusion, Real-time Profiling and Analytics Toolkit

The analytics Toolkit’s design and implementation focuses on supporting the following:

 The ease of integration of analysis processes/scripts by data scientists independently of
the programming language used.

 The ease of selection of monitoring metrics (resource usage, orchestration, application
component specific metrics) and the fetching of the required time-series data from the
Monitoring Engine in order to realise analysis over them.

 The production of analysis results in the form of URLs that can be easily viewed and
compared by the interested parties (e.g. data scientists, network administrators)

 The design and implementation of a set of APIs for supporting the registration and
execution of analysis processes.

The Toolkit contains a set of analysis processes/scripts including:

Correlation Analysis:
identify strong
correlations, relations
and trends among
infrastructure-oriented
and application
component-specific
metrics, leading to
insights that can be
used for runtime policy
definition and proactive
decision making by the
various orchestration
mechanisms. Two types
of diagrams are
produced: a
correlogram in the form
of a table as well as a
Chord diagram
providing the most
significant correlations
per metric.

Figure 24: Indicative screenshot (correlogram) from a correlation analysis

Page 40 of 62

Deliverable D3.2

Figure 25: Indicative screenshot (chord diagram) from a correlation analysis

Time Series
Decomposition and
Forecasting:
identify trends and
provide accurate
forecasting models,
forecast resource
demanding periods and
scale proactively the
deployed functions to
optimally serve the
workload.

Figure 26: Indicative screenshot from a time series decomposition analysis

Page 41 of 62

Deliverable D3.2

Resource Efficiency
Analysis:
identify resource
consumption trends
and capacity limits,
used for planning
accordingly optimal
reservation of
resources.

Figure 27: Indicative screenshot from a linear regression analysis

Elasticity Efficiency
Analysis:
identify the
performance of scaling
operations, along with
the impact of scaling
actions in the service
output efficiency.
Elasticity efficiency may
be expressed as a pair
of discrete metrics
(Application Capacity
Change as output and
Capacity Change Lead
Time as input).
Application Capacity
Change is the
incremental capacity
change related to a
scaling action. Capacity
Change Lead Time is the
time required for a
capacity change. Both
metrics are going to be
depicted in relevant
visualisations.

Time-series data for orchestration metrics are collected, including data
for the triggering and realization of elasticity actions. Such data lead to
the extraction of elasticity efficiency profiles. Future work includes the
potential for providing automated graphs, such as the one shown in the
following figure.

Figure 28: Indicative graph for an elasticity efficiency analysis
[NFVEfficiency]

Page 42 of 62

Deliverable D3.2

Clustering:
identify clusters based
on time series data from
multiple metrics,
leading to identification
of groups of metrics
with similar behaviour.
Upon the clustering
analysis, identification
of the boundaries of
elasticity rules’
triggering based on the
component operation is
also realised.

Figure 29: Indicative screenshot from a clustering analysis

Filter healthy metrics:
check the quality of the
collected time series
data and provide
indication about the
percentage of the
qualitative time-series
data (e.g., no many
empty values)

The outcome of this analysis is a short text description with the percentage
of the monitoring metrics that provide qualitative time-series data.

The overall architectural approach of the analytics toolkit is depicted in Figure 30. Access to
the supported algorithms (analysis scripts) is provided through APIs provided by a developed
Proxy. The Proxy is based on the OpenCPU framework in case of R analysis scripts or the Flask
framework in case of Python analysis scripts. Following, analysis templates can be designed
and introduced in the Orchestrator Dashboard for supporting specific analysis processes.
Based on the templates, analysis processes can be initiated, where configuration parameters
and start and end time for the analysis data are provided. The related time series data is
fetched by the monitoring engine and led as input in the analysis process. The analysis is then
executed and the analysis results are made available in the form of reports in the dashboard.
It should be also noted that interconnection with workload generators is supported over the
deployed application graphs, enabling the stress testing of the deployed graphs and the
collection of valuable monitoring data for the analysis processes.

Page 43 of 62

Deliverable D3.2

Figure 30: Analytics toolkit architectural approach

6.1 Main components

6.1.1 Data Fusion

The success of a Vertical Slice deployment of a service mesh application graph very much
depends on the Quality of Service (QoS) it offers to the end user with regard to the aspects of
end to end delay and general user experience. Furthermore, the monitoring, descriptive and
predictive analysis of the functional and non-functional aspects of the Application (for
instance, non-buggy business logic and resource load allocation) are useful to the Service
(Application) Provider and to the Telco (Infrastructure) provider together. The direct benefits
may span from the reduction of Capital and Operational expenses to the development of
further profitable functionalities tailored to the user needs.

Publish – Subscribe Data Streaming Paradigm
We introduce the Publish – Subscribe pattern (shortly, pub-sub) here for message-based

data systems. The general data flow, as illustrated in Figure 32, starts with a producer
publishing a message to a broker. The messages are often sent to a topic, which can be
thought of as a logical grouping for messages. Next, the message is sent to all the consumers
subscribing to that topic. It may not be obvious initially, but often a producer publishing a
message doesn’t mean that it needs to subscribe to a topic. Nor is it required that a subscriber
produce a message. Apache Kafka [Kafka] is the underlying technology for such a streaming
system and is being used for the Data Fusion module.

Page 44 of 62

Deliverable D3.2

Figure 31: The Publish Subscribe Paradigm for Streaming Data

To support and enhance this kind of advanced insights, the Service Provider and the Telco
provider must tap on to as many data streams as possible. Three types of raw and composite
KPIs streams are identified in the context of a service mesh positioned on top of a 5G network
infrastructure:

 Application (business logic) data streamed by all application components that comprise
the entire Service. In the MATILDA framework such data can be relayed to the
Orchestrator plane. For instance, how many users are connected to each application
microservice or the duration of their visits can be either stored on a specialized
persistence microservice (e.g. an SQL/NoSQL Database) or, rather, published to a
publish/ subscribe data stream (i.e. a Kafka topic).

 Microservices data that contain resource usage or relevant data. Examples of such
information are: the number of concurrent queries to a database, the CPU load or
memory usage on a specific container, I/O read/write statistics, etc. Again, this
information can be directly reported through a subscription to a topic with the
“heartbeat” of each application container or, alternatively, through a monitoring
mechanism (such as Prometheus) which republishes the same data or aggregates of
them.

 Compute and network resource usage data than can be also published directly by the
underlying OpenStack infrastructure’s Kafka reporting bus, thus reducing data traffic
within the MATILDA deployed infrastructure.

Furthermore, topology (application and network graph) metadata are available, which
enables the deployment of MATILDA application graphs based on the optimization step of
selecting the most appropriate resources. Furthermore, any alterations made to the graph are
transferred to a newer version of the same graph. Examples of this include scaling
components through commissioning or decommissioning resources by the Telco provider.

The Data Fusion component is responsible for the delivery of accurate, complete, and
dependable information from the data streams discussed above. The fusion of data does not

Page 45 of 62

Deliverable D3.2

necessarily involve some kind of summarizing aggregations of, for instance, the average
resource usage, but can also allow for higher data quality of all data sources by interpolation,
imputation or reasoning over data. A beneficial by-product of this data fusion process can be
that the network traffic generated by monitoring streams can be intelligently reduced and
thus analytics can be performed on smaller sized data with obvious speed and cost
implications.

For the Data Fusion mechanism to exist pub-sub brokers are employed to monitor topics.

Such topics are scanned and filtered for useful information which is in turn channelled via
Kafka producers to software modules that perform –among others- fuzzy and deep learning-
powered data fusion and from there persisted to their appropriate storage. Fused data are
available to other MATILDA components for further real-time or batch analysis: The Analytics
Engine & Profiling Engine, the Monitoring and Visualization mechanism, the MATILDA
Orchestrator’s rule-based reasoning engine and the Application Logging mechanisms.

These functionalities are architecturally described in Figure 32.

Figure 32: Data Fusion Module and functionalities on multiple Data Streams

The set of functionalities envisioned above within the Data Fusion module must be
translated into software components. The main components that comprise the Data Fusion
module by the MATILDA partners are listed below (in Table 5). These include: the pub-sub
software components that are tasked with handling streaming data (producers, consumers,
brokers), adapters to other software modules of the MATILDA Orchestrator architecture
(Prometheus monitoring, Orchestrator Engine, Marketplace, Analytics Engine) and the Data
Fusion algorithms software component.

Page 46 of 62

Deliverable D3.2

Table 5: List of Data Fusion module SW components

SW Component Identifier Description Partners

Data Fusion Implementation of Data Fusion algorithms
on multiple data streams

INC

OSM Kafka Bus adapter Adapter/Producer on OSM NBI/MON for the
Data Fusion Module

ATOS, INC

Producer for qMON Kafka Producer for qMON metrics collection/
monitoring service

INC

Producer/Adapter Prometheus Kafka Producer from Prometheus to Data
Fusion and Analytics Module

INC, UPRC

Producer from ServiceMesh
sidecar

Kafka Producer from the service mesh
sidecar (e.g. Envoy, or Linkerd) to Data
Fusion and Analytics Module

INC

Generic Fusion Consumer Kafka Generic Consumer for other MATILDA
Orchestrator Modules (e.g. Policy Manager
including validation aspects, Profiling)

INC, UBI

Internal Analytics Consumer Internal Kafka Consumer for the Analytics
Module

INC

6.1.2 Real-time profiling and Analytics module

A set of profiling mechanisms are designed and partially implemented, focusing on
supporting various profiling aspects in application component and application graph level.
Such mechanisms may be applied in benchmarking scenarios, as well as over data collected in
an operational environment. Profiling concerns the examination of the behaviour of the
application characteristics (e.g., resources usage efficiency, elasticity profiles, graph-based
dependencies, potential bottleneck points) under various conditions, leading to its
characterization with regards to a set of performance aspects.

In case of benchmarking, a set of scenarios are executed, each one of which considers a
specific input dataset and a set of rules towards obtaining the measurement results.
Benchmark definitions often refer to the concept of a System Under Test (SUT) that is a
collection of components necessary to run the benchmark scenario. The idea of a SUT is to
define a complete application architecture containing one or more components of interest,
which in our case are the components of the MATILDA architecture including the vertical
application orchestration mechanisms and the 5G programmable infrastructure management
mechanisms. A set of tools are provided, creating and feeding the SUT with the required
workload for the realisation of the test. Such tools include -among others- MoonGen
[MoonGen], a fully scriptable high-speed packet generator, wrk [wrk] HTTP benchmarking
tool.

In case of operational environments, deployment of 5G-ready applications is realised over
the provided infrastructure leading to the activation of a series of monitoring mechanisms

Page 47 of 62

Deliverable D3.2

and the collection of application and infrastructure-oriented metrics. The collected data is
made available in a time series format through Prometheus. Following, analysis may take
place based on analysis scripts based mainly on the R programming language.

The set of testing activities includes load testing (understand the behaviour of the
application under a specific expected load), stress testing (testing beyond normal operational
capacity, often to a breaking point, in order to observe the results), portability testing
(examine the deployment and operation of the applications across various platforms and
operating systems), reliability testing (exercising an application so that failures are
discovered and removed before the system is deployed). The outcome of these series of tests
is going to lead to profiling reports (Figure 33) with regard to resources usage (CPU, Memory,
Storage intensiveness) and elasticity efficiency of the software (time and capacity for
supporting scaling operations), identification of capacity limits and breaking points upon
stressing the software processes, reliability reports taking into account time series data with
identified problems and failures, insights with regard to set of deployment platforms
supported, as well as reports regarding behavioural aspects of the software in terms of
capacity for recovery to failures and responsiveness and efficiency of the developed self-
configurability mechanisms.

Figure 33: Profiling Categorization

6.2 Interfaces

A set of interfaces have been specified and implemented for supporting the set of data
fusion, real time analysis and profiling mechanisms, including the following:

 Interface for submitting queries to Prometheus monitoring engine: used by the various
services that require access to monitoring data.

 Interface for registering monitoring alerts to Prometheus monitoring engine: used for
registering expressions, as well as used by the various data fusion, analysis and
profiling mechanisms.

Page 48 of 62

Deliverable D3.2

 Interface for registering an analysis script that can be used for realising an analysis,
upon proper configuration.

 Interface for executing an analysis process: used for triggering the execution of an
analysis script and fetching back the results.

 Interface for providing a workload to an application graph instance: used for profiling
purposes.

6.3 Baseline technologies

The baseline technologies used for the development of the data fusion, real-time profiling
and analytics toolkit include:

 OpenCPU framework for scientific computing
 Flask framework
 Apache Spark for Big Data Processing
 Apache SparkML for Machine Learning tasks
 Apache Kafka for streaming data pipeline
 Apache HDFS, Parquet for Distributed Persistence (Data Lake)
 Tensorflow, for Deep Learning tasks
 Incelligent Analytics Platform
 R statistics package
 Prometheus for monitoring
 Moongen, wrk for workload preparation

Page 49 of 62

Deliverable D3.2

7 Policies Enforcement and CEP Mechanisms

Τhe policies enforcement mechanisms include a set of modifications in the policy manager
for improving performance and scalability aspects. Specifically, in order to overcome potential
computational problems, a distributed implementation of the policy manager has been
realised, in addition to the monolithic approach and thus horizontal scalability of the policy
manager is supported, as shown in Figure 34.

Figure 34: Horizontally Scalable Policy Manager Design

The consistent hashing technique is being used so as to obtain the optimal creation of the
application-based policies and the optimal consumption of the monitoring messages delivered
via the pub/sub framework (Figure 35). In more detail, thanks to the use of the consistent
hashing technique, the messages targeted to the same application graph are always routed at
the same queue, leading to the minimum set of exchangeable messages between the broker
and the policy manager. This results in the relief of any possible computational problems, in
case of a large number of operational policies that consume constantly messages from the
pub/sub framework and generate elasticity actions.

Figure 35: Consistent Hashing Technique for Scalable Policy Manager

Page 50 of 62

Deliverable D3.2

In order to further optimize the policy manager in terms of resiliency, a remote maven
repository (NEXUS) has been introduced in order to support the quick enforcement of all
necessary policies in case of an independent failure of a policy manager worker (see Figure
36). In case of a worker failure, policy rules are simply downloaded as package from the
Nexus server without any recreation via the descriptors. This boosts the time of recovery in
case of failure that is so important in cases where immediate actions have to be taken. Also,
thanks to the Nexus server, the worker that updates the policy does not have to be the same
as the one that enforces the policy, which simplifies the overall solution adaptation. The use of
Nexus also leads to smaller size of workers, since it hosts all the drools-based policies and
makes them available on demand at the workers. Last but not least, the distributed approach
permits the update of rules on the fly. The policies can be updated at operation time without
affecting the working memory. This leads to quick updates of the new policy rules and zero
loss of the monitoring metrics information that has been gathered.

Figure 36: Nexus Repository for hosting Policy Descriptors

Page 51 of 62

Deliverable D3.2

7.1 Main components

7.1.1 Policies Enforcement mechanism

The Policies Manager in MATILDA provides policies enforcement over the deployed
application graphs following a continuous match-resolve-act approach. Specifically, the match
phase regards the mapping of the set of applied rules that are satisfied based on the alerts
coming from the monitoring infrastructure. The resolve phase regards the process of conflict
resolution for different rules that may be valid and triggered at the same time. Thus, the
resolve phase aims at resolution among these rules taking into account the pre-defined
salience of each rule. The act phase regards the provision of a set of suggested actions by the
policy manager to the orchestration components, the Deployment Manager and the Execution
Manager of the MATILDA orchestrator, responsible for application graphs placement and
management, respectively. Policies enforcement is realized through a rule-based framework
that attempts to derive execution instructions based on the current set of data and the active
rules; rules associated with the deployed application graphs at each point of time. Specifically,
we have adopted Drools rules-based management system [Drools], an open-source solution
that supports the implementation of runtime policies enforcement mechanisms.

Specifically, the Policy manager (following a Drools approach) consists of (i) the working
memory (WM); facts based on the provided data, (ii) the production memory (PM); set of
defined rules, and (iii) an inference engine (IE) that supports reasoning and conflict resolution
over the provided set of facts and rules, as well as triggering of the appropriate actions. Data is
fed to the WM through the monitoring mechanisms that is responsible to collect data based on
a set of active monitoring probes. The PM is also fed by policies associated with the deployed
application graphs, as provided through the Policies Editor - the editor made available to
service providers for policies definition.

Data monitoring and management processes are supported through a set of passive
monitoring probes by the Prometheus monitoring engine. Collection and consumption of
information is based on the configuration of a Publish/Subscribe framework -namely the
Kafka framework-, where set of components, resource usage and application graph metrics
are provided based on application graph-oriented topics. Policy manager dynamically handles
and converts the collected data to WM facts. Such facts can then be matched with already
defined rules on the active policies. Definition of rules per policy is supported through the
Policy Editor in a per application graph basis, based on the concepts represented in the
MATILDA metamodel. An application graph may be associated with a set of policies; however,
only one can be active during its deployment and execution time. Each policy consists of a set
of rules. Each rule consists of the conditions part - denoting a set of conditions to be met- and
the actions part -denoting actions upon the fulfilment of the conditions. The defined policies
are translated to a set of rules that become part of the Policy Manager. Expressions may
regard custom metrics of an application graph or a component/microservice. Detailed
description of the policies metamodel and the supported types of conditions and actions is
provided at D1.5 “Deployment and Runtime Policy Metamodel” [MATILDA-D1.5].

Each rule has attached a specific salience that is used as a priority indicator during conflict
resolution by the IE. A time window can be optionally specified per rule for the validation of
the successful enforcement of the proposed actions. When attaching a specific runtime policy

Page 52 of 62

Deliverable D3.2

to an instantiated application graph, the specified set of policy rules are deployed to the policy
manager PM, while the WM agent is constantly feeding the WM with new facts.

The high-level interaction between the Policy Manager and the Monitoring mechanisms is
depicted in Figure 37. Upon the instantiation of a 5G-ready application graph and the
enforcement of a policy, a set of monitoring metrics are collected and processed according to
a set of expressions defined in the policies. The metrics and the corresponding expressions
may regard application-component-specific metrics, application-graph-specific metrics or
resources usage metrics. Processing of the collected data is realised within the Monitoring
mechanisms (Prometheus), leading to the triggering of alerts that leads to the publishing to
the Message Broker (Kafka) at a monitoring topic. Such alerts are consumed by the Policy
Manager (Drools based implementation) for realising inference over the defined set of rules.
The suggested actions from the inference results are then published to the Message Broker at
a relevant topic in order to be consumed by orchestration mechanisms.

Figure 37: Policy Manager and Monitoring Mechanisms Interaction

7.1.2 Complex Event Processing mechanism

The Complex Event Processing mechanism of the MATILDA Intelligent Orchestrator
suggests a dynamic engine that, enriched with Machine Learning techniques can be fully
adaptive to its environment [Symvoulidis-2019]. The high-level architecture was described in
the deliverable regarding the first release [MATILDA-D3.1]. In this deliverable a detailed
description of the mechanism will be given. As presented in Figure 38, the engine is divided in
two major components, namely the Complex Event Processing engine and the Threshold
identifier, which are going to be described in more detail below.

Page 53 of 62

Deliverable D3.2

Figure 38: Dynamic Complex Event Processing mechanism – Overall architecture

The Complex Event Processing engine regards a Drools Fusion engine, whose job is to
trigger the rules from the Knowledge Base when a condition is met. These rules are created in
the first place by a Domain expert or a Service provider.

The Complex Event Processing engine, as is, regards a typical engine without any level of
intelligence. For this reason, the Threshold identifier service is developed, whose purpose is
to identify in real-time the behaviour of the deployed services and update the Knowledge Base
(i.e. the rules) in order for the CEP engine to act accordingly. Under the hood, the Threshold
identifier regards an Incremental Learning algorithm specifically developed for the purposes
of the MATILDA project. In more detail, an Incremental DBSCAN reference implementation is
developed that identifies which is the normal behaviour of the service based on the
monitoring metrics.

The process of the identification of the behaviour of the deployed services starts with the
collection of a dataset of historical monitoring data that are fed to a batch DBSCAN algorithm
in order to create the first clusters that represent the usage of the service.

At runtime the monitoring data are provided to the Incremental DBSCAN algorithm that,
based on the outcomes of the batch algorithm, decides whether it should be added in an
already existing cluster, considered as an outlier, or to create a new cluster with other
outliers. In any case the outcomes are taken under consideration the next time a new data is
inserted, something that we could not achieve using only the batch implementation of the
DBSCAN.

Page 54 of 62

Deliverable D3.2

As already mentioned, the clusters represent the behaviour of the deployed service. We use
that information to make the CEP engine more adaptable to its environment, using a simple,
yet effective methodology. The cluster with the most elements constituting it represents the
normal behaviour of the service. We take the limits of the cluster and based on them we adjust
the rules in the Knowledge Base. This leads to a more context aware solution that can identify
the changes of its environment faster and adapt without the need of external assistance.

The use of Incremental DBSCAN over the batch DBSCAN approach is preferred in order to
avoid the time-consuming process of re-training of the algorithm. In addition, using the
incremental approach of DBSCAN the newly incoming data is taken under consideration
instantly and the decisions made are up-to-date.

7.2 Baseline technologies

This chapter describes the baseline technologies used for the implementation of the
MATILDA Complex Event Processing and Policies Enforcement engines. As far as the Complex
Event Processing mechanism is concerned, Drools Fusion [Drools] is used as the CEP solution.
Drools Fusion is an open-source tool developed by JBoss. More regarding Drools Fusion on
the official documentation [Drools-Fusion]. The language used for developing the Complex
Event Processing engine is Java [Java].

Drools Fusion is the module created by Redhat as an extension to Drools, responsible for
adding Complex Event Processing capabilities into the platform. Drools is a business rule
management system that allows fast and reliable evaluation of business rules. Drools
supports both forward- and backward-chaining. Fusion is a module among others
(OptaPlanner, WorkBench, etc.) that comprise the overall Drools platform, making it a
complete Business Rule Management framework. Drools has been written and is available in
Java.

Drools Fusion has many features that make it a great solution for problems that need to be
solved through Complex Event Processing techniques. Events in Drools Fusion are
distinguished as a record of a state change and have a few distinguishing characteristics; the
events are immutable meaning that they cannot be changed after they are detected and there
are strong temporal constraints correlating the events.

Sliding windows are also supported in Drools Fusion, using the timestamp that is linked to
each event for the creation the windows. There are two ways a sliding window can be created.
The first regards the match of events that occur in the last X time units, called Sliding Time
Window, and the second matches the events based on the times they occurred, called Sliding
Length Window.

Drools Fusion handles events as a special type of facts. Facts are an instance of an
application object represented as a Java Object. These facts are declared as events giving them
the aforementioned characteristics. After the declaration of events is complete, a set of rules
are created that are match with the events. These rules are in the form of “WHEN condition
THEN action”.

Page 55 of 62

Deliverable D3.2

8 Northbound APIs for Communication Service Providers

From a Vertical Orchestrator point of view, a MATILDA-enabled 5G provider is a combined
Telecommunications and Infrastructure Service provider that is able to process Slice Intents
and generates network Slices that are required in order for an application graph instance to
be operational.

The characteristics of this layer are “imposed” by the final OSS layer which is analysed in
Deliverable D4.2. For the sake of completeness, it should be mentioned that the VAO has the
ability to define (or restrict) the edge locations that the vertical application is expected to
scale. Such restriction constitutes another distinct slice-request trait that is included in
the implementation.

8.1 Main components

Northbound APIs are provided by an Operations Support System (OSS). OSS is a web
application, which offers a user interface along with a RESTful API that is used by the
Orchestrator. The list of relevant components is cited in the following table:

Table 6: List of Northbound APIs components

SW Component Identifier Description Partners

Operations Support System Implementation Northbound APIs INTRA, UBI

The overall architecture of the Northbound APIs is depicted in Figure 39:

Figure 39: MATILDA Northbound APIs architecture

Regarding the MATILDA OSS, the following figure (Figure 40) cites the interface of the OSS

depicting a graph and the corresponding components and their information (e.g., identifiers).

Page 56 of 62

Deliverable D3.2

Figure 40: MATILDA OSS user interface

8.2 Interfaces

Two interfaces have been specified and partially implemented for supporting the
Northbound APIs:

 Interface for accepting a Slice Intent from the Orchestrator. Asks the telco provider to
materialize a Slice given a specific Application Graph Instance and a set of constraints.
The response pattern of this interface is asynchronous.

 Interface for informing the Orchestrator if a Slice can be materialized or not in order to
start the deployment of the specific Application Graph Instance. The response pattern of
this interface is synchronous.

Indicative serialized argument and an expected response are presented in Table 7 and Table
8 respectively.

Table 7: Indicative Slice Intent serialized in JSON Format

{
 "applicationInstanceID": "580",
 "name": "OSSScenario",
 "callbackURL": "http://localhost:8080/api/v1/callback/slice/580",
 "authenticationDetails": {
 "clientToken": "!telcoprovider!",
 "clientKey": "telcoprovider"
 },
 "componentNodeInstances": [{
 "componentNodeInstanceID": "581",
 "componentNodeInstanceName": "TestCaseMariaDB"
 }, {
 "componentNodeInstanceID": "587",
 "componentNodeInstanceName": "TestCasePhpMyAdmin"
 }],
 "constraints": [{
 "constraintID": "591",
 "interfaceInstanceID": "590",
 "qi": "10",
 "radioServiceType": "1",

Page 57 of 62

Deliverable D3.2

 "resourceType": "DELAY_CRITICAL_GBR",
 "allocationRetentionPriorityProfile": 1,
 "minimumGuaranteedBandwidth": 120.0,
 "maximumRequiredBandwidth": 200.0,
 "constraintUnit": "kbps",
 "category": "ACCESS",
 "type": "HARD"
 }, {
 "constraintID": "592",
 "graphLinkNodeID": "544",
 "constraintMetric": "DELAY",
 "constraintUnit": "ms",
 "constraintValue": "100.0",
 "category": "GRAPH_LINK",
 "type": "HARD"
 }, {
 "constraintID": "593",
 "componentNodeInstanceID": "587",
 "constraintMetric": "MIN_V_CPU",
 "constraintUnit": "amount",
 "constraintValue": "4.0",
 "category": "COMPONENT_HOSTING",
 "type": "HARD"
 }, {
 "constraintID": "594",
 "componentNodeInstanceID": "587",
 "constraintMetric": "MIN_RAM",
 "constraintUnit": "gb",
 "constraintValue": "16.0",
 "category": "COMPONENT_HOSTING",
 "type": "HARD"
 }, {
 "constraintID": "595",
 "componentNodeInstanceID": "587",
 "constraintMetric": "MIN_STORAGE",
 "constraintUnit": "gb",
 "constraintValue": "10.0",
 "category": "COMPONENT_HOSTING",
 "type": "HARD"
 }, {
 "constraintID": "596",
 "componentNodeInstanceID": "581",
 "constraintMetric": "MIN_V_CPU",
 "constraintUnit": "amount",
 "constraintValue": "4.0",
 "category": "COMPONENT_HOSTING",
 "type": "HARD"
 }, {
 "constraintID": "597",
 "componentNodeInstanceID": "581",
 "constraintMetric": "MIN_RAM",
 "constraintUnit": "gb",
 "constraintValue": "10.0",
 "category": "COMPONENT_HOSTING",
 "type": "HARD"
 }, {
 "constraintID": "598",
 "componentNodeInstanceID": "581",
 "constraintMetric": "MIN_STORAGE",
 "constraintUnit": "gb",
 "constraintValue": "16.0",
 "category": "COMPONENT_HOSTING",

Page 58 of 62

Deliverable D3.2

 "type": "HARD"
 }],
 "graphLinkNodes": [{
 "graphLinkNodeID": "544",
 "fromComponentNodeInstanceID": "587",
 "toComponentNodeInstanceID": "581",
 "type": "CORE"
 }],
 "dateCreated": "Jun 13, 2018 12:51:38 PM"
}

Table 8: Indicative Slice serialized in JSON Format

{
 "applicationInstanceID": "580",
 "vimDescriptors": [{
 "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257",
 "domain": "default",
 "project": "maestro",
 "username": "maestro",
 "password": "!maestro!",
 "endpoint": "http://192.168.3.253:5000/v3/"
 }],
 "componentPlacements": [{
 "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257",
 "componentNodeInstanceID": "581",
 "attachmentPoints": [{
 "graphLinkNodeID": "544",
 "attachmentPointIdentifier": "6763cfb6-d7ab-43d1-bfac-c997b4685ad2"
 }]
 }, {
 "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257",
 "componentNodeInstanceID": "587",
 "attachmentPoints": [{
 "graphLinkNodeID": "544",
 "attachmentPointIdentifier": "b66b6a90-c550-413b-b484-961ad339b2bd"
 }]
 }],
 "constraintSatisfactions": [{
 "constraintID": "591",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "592",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "593",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "594",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "595",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "596",

Page 59 of 62

Deliverable D3.2

 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "597",
 "satisfied": true,
 "constraintType": "HARD"
 }, {
 "constraintID": "598",
 "satisfied": true,
 "constraintType": "HARD"
 }],
 "dateCreated": "Jun 13, 2018 12:51:49 PM"
}

8.3 Baseline technologies

As far as the Northbound APIs development is concerned, Spring Boot [Spring-Boot] has
been used. Spring Boot made it easy to develop the Northbound APIs, as it provides a range of
non-functional features such as embedded servers, security, externalized configuration, etc.
On the other side, Thymeleaf [Thymeleaf] template engine along with Bootstrap [Bootstrap]
are used for the user interface.

Page 60 of 62

Deliverable D3.2

9 Conclusions

This document presents the design and implementation of the final release of the intelligent
orchestration mechanisms of the vertical application orchestration, as they are developed
within WP3. The set of mechanisms are provided to WP5 and have been integrated in the final
release of the MATILDA integration framework. Integration has been mainly realised with the
set of WP4 components for tackling the network slice creation and management per
application graph, while the overall status of application graphs composition and deployment
is made available in the provided Dashboard in WP2.

The monitoring solution of the MATILDA project, as described above, is responsible for the
management of the metrics captured from the various infrastructure components, the
management of the alerts and events, based on these metrics, and the visualization of the
available data. The Data Fusion, Real-time Profiling and Analytics Toolkit is responsible for
the extraction of accurate and reliable information from the monitoring data streams and the
prediction of meaningful insights to the Service Provider and Communication Service
Provider. The service discovery mechanisms will handle tasks such as dynamic service
discovery, load balancing, publication of metrics, etc. In the meantime, the policies
enforcement and CEP mechanisms facilitate on the decision-making of the execution manager,
providing insights during runtime of application graphs, solving potential conflicts and
suggesting actions to the execution manager. Additionally, middleware APIs for the
connection with the Communication Service providers are also presented, indicating the
connection of the Communication Service providers with the vertical orchestrator.

The source code supporting the current software version is included in the respective
repositories in the MATILDA GitLab.

Page 61 of 62

Deliverable D3.2

References

[Abadi-2016] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Zheng, X.
(2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
Retrieved from http://arxiv.org/abs/1603.04467

[Bootstrap] Bootstrap website, Available Online: https://getbootstrap.com/

[Compact-Profile] Java Compact Profile, Available Online:
http://www.oracle.com/technetwork/java/embedded/embedded-se/documentation/
compact-profiles-overview-2157132.html

[DL4J] Deep Learning for Java, Available Online: https://deeplearning4j.org/

[Drools] Drools Documentation, Available Online:
https://docs.jboss.org/drools/release/7.5.0.Final/drools-docs/html_single/index.html

[Drools Fusion] Drools Fusion User Guide, Available Online:
https://docs.jboss.org/drools/release/5.2.0.CR1/drools-fusion-docs/html_single/

[Duda-2000] Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern Classification (2nd Edition).
New York, NY, USA: Wiley-Interscience.

[eBPF] A thorough introduction to eBPF, Available Online: https://lwn.net/Articles/740157/

[Java] Java website, Available Online: https://www.java.com/en/

[Kafka] Apache Kafka, Available Online: https://kafka.apache.org/

[LeCun-2015] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436.
Retrieved from http://dx.doi.org/10.1038/nature14539

[Maaten-2008] L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9 (Nov):2579-2605, 2008.

[MATILDA] MATILDA Website, Available Online: http://www.matilda-5g.eu/

[MATILDA-D1.1] MATILDA D1.1 - MATILDA Framework and Reference Architecture,
MATILDA H2020 Project, Available Online: http://www.matilda-5g.eu/index.php/outcomes

[MATILDA-D1.5] MATILDA D1.5 - Deployment and Runtime Policy metamodel, MATILDA
H2020 Project, Available Online: http://www.matilda-5g.eu/index.php/outcomes

[MATILDA-D3.1] MATILDA D3.1- Intelligent Orchestration Mechanisms – First release,
MATILDA H2020 Project, Available Online: http://www.matilda-5g.eu/index.php/outcomes

[MoonGen] MoonGen GitHub repository, Available Online:
https://github.com/emmericp/MoonGen

[Netdata] Netdata website, Available Online: https://my-netdata.io/

[NFVEfficiency] NFV Workload Efficiency Whitepaper, Available Online:
https://tl9000.org/resources/documents/NFV%20Workload%20Efficiency%20Whitepaper.pdf

[OSM] OSM website, Available Online: https://osm.etsi.org

[Prometheus] Prometheus website, Available Online: https://prometheus.io/

[qMON] Internet Institute website, Available Online: http://www.qmon.eu/

http://arxiv.org/abs/1603.04467
https://getbootstrap.com/
http://www.oracle.com/technetwork/java/embedded/embedded-se/documentation/compact-profiles-overview-2157132.html
http://www.oracle.com/technetwork/java/embedded/embedded-se/documentation/compact-profiles-overview-2157132.html
https://deeplearning4j.org/
https://docs.jboss.org/drools/release/7.5.0.Final/drools-docs/html_single/index.html
https://docs.jboss.org/drools/release/5.2.0.CR1/drools-fusion-docs/html_single/
https://lwn.net/Articles/740157/
https://www.java.com/en/
https://kafka.apache.org/
http://dx.doi.org/10.1038/nature14539
http://www.matilda-5g.eu/
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
https://github.com/emmericp/MoonGen
https://my-netdata.io/
https://tl9000.org/resources/documents/NFV%20Workload%20Efficiency%20Whitepaper.pdf
https://osm.etsi.org/
https://prometheus.io/
http://www.qmon.eu/

Page 62 of 62

Deliverable D3.2

[React-JS] React JS website, Available Online: https://reactjs.org/

[Spark-MLib] Apache MLib, Available Online:
https://spark.apache.org/docs/latest/mllib-guide.html

[Spring] Spring framework, Available Online: https://www.spring.io

[Spring-Boot] Spring-boot website, Available Online: https://spring.io/projects/spring-boot

[Symvoulidis-2019] C. Symvoulidis, I. Tsoumas, and D. Kyriazis, "Towards the identification
of context in 5G infrastructures", Computing Conference 2019, London, UK, 2019. In press.

[Thymeleaf] Thymeleaf website, Available Online: https://www.thymeleaf.org/

[wrk] wrk GitHub repository, Available Online: https://github.com/wg/wrk

https://reactjs.org/
https://spark.apache.org/docs/latest/mllib-guide.html
https://www.spring.io/
https://spring.io/projects/spring-boot
https://www.thymeleaf.org/
https://github.com/wg/wrk

	Disclaimer
	Copyright
	Table of Contents
	Table of Acronyms
	1 Executive Summary
	2 Introduction
	2.1 Scope of the Document
	2.2 MATILDA End-to-End story

	3 Deployment and Execution Manager
	3.1 Main components
	3.2 Interfaces
	3.3 Baseline technologies

	4 MATILDA Agent and Service Discovery Mechanisms
	4.1 Main components
	4.2 Interfaces
	4.3 Baseline technologies

	5 Monitoring Mechanisms
	5.1 MATILDA Overall monitoring solution
	5.1.1 Application component monitoring
	Application component monitoring - passive
	Application component monitoring - active

	5.1.2 Network Slice monitoring
	5.1.3 NFVO/OSM metric collection
	Main components

	5.1.4 qMON NFV-based monitoring
	Main Components
	Network service KPIs
	Infrastructure provider/telco network KPIs
	Implementation requirements

	5.2 Baseline technologies
	VNF monitoring
	Container monitoring
	Continuous network performance monitoring
	MATILDA Monitoring Solution

	6 Data Fusion, Real-time Profiling and Analytics Toolkit
	6.1 Main components
	6.1.1 Data Fusion
	Publish – Subscribe Data Streaming Paradigm

	6.1.2 Real-time profiling and Analytics module

	6.2 Interfaces
	6.3 Baseline technologies

	7 Policies Enforcement and CEP Mechanisms
	7.1 Main components
	7.1.1 Policies Enforcement mechanism
	7.1.2 Complex Event Processing mechanism

	7.2 Baseline technologies

	8 Northbound APIs for Communication Service Providers
	8.1 Main components
	8.2 Interfaces
	8.3 Baseline technologies

	9 Conclusions
	References

