
Page 1 of 29

A Holistic, Innovative Framework for the Design,
Development and Orchestration of 5G-ready

Applications and Network Services over Sliced
Programmable Infrastructure

DELIVERABLE D1.5

DEPLOYMENT AND RUNTIME POLICY

METAMODEL

Due Date of Delivery: M9 Mx (28/02/2018 dd/mm/yyyy)

Actual Date of Delivery: 05/03/2018 dd/mm/yyyy

Workpackage:
WP1 – MATILDA Reference Architecture,
Conceptualization and Use Cases

Type of the Deliverable: OTHER

Dissemination level: PU

Editors: UBITECH

Version: 1.0

Co-funded by
the Horizon 2020
Framework Programme
of the European Union

Call:

H2020-ICT-2016-2

Type of Action:

IA

Project Acronym:

MATILDA

Project ID:

761898

Duration:

30 months

Start Date:

01/06/2017

Project Coordinator:

Name:
Franco Davoli

Phone:
+39 010 353 2732

Fax:
+39 010 353 2154

e-mail:
franco.davoli@cnit.it

Technical Coordinator

Name:
Panagiotis Gouvas

Phone:
+30 216 5000 503

Fax:
+30 216 5000 599

e-mail:
pgouvas@ubitech.eu

Co-funded by

Page 2 of 29

Deliverable 1.5

List of the Authors

CNIT Consorzio Nazionale Interuniversitario per le Telecomunicazioni

Franco Davoli, Roberto Bruschi

ATOS ATOS Spain SA

Javier Melian

INTRA INTRASOFT INTERNATIONAL SA

Kostas Thivaios, Marios Logothetis

UBITECH GIOUMPITEK Meleti Schediasmos Ylopoiisi kai Polisi Ergon Pliroforikis EPE

Panagiotis Gouvas, Anastasios Zafeiropoulos, Eleni Fotopoulou, Thanos Xirofotos

SUITE5 SUITE5 Data Intelligence Solutions

Fenareti Lampathaki, George Sideratos, Dimitris Panopoulos

UPRC UNIVERSITY OF PIRAEUS RESEARCH CENTER

Angeliki Alexiou, Eftychia-Asimina Vorila

Page 3 of 29

Deliverable 1.5

Disclaimer

The information, documentation and figures available in this deliverable are written by the
MATILDA Consortium partners under EC co-financing (project H2020-ICT-761898) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

Copyright

Copyright © 2018 the MATILDA Consortium. All rights reserved.

The MATILDA Consortium consists of:

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI

ATOS SPAIN SA (ATOS)

ERICSSON TELECOMUNICAZIONI (ERICSSON)

INTRASOFT INTERNATIONAL SA (INTRA)

COSMOTE KINITES TILEPIKOINONIES AE (COSM)

ORANGE ROMANIA SA (ORO)

EXXPERTSYSTEMS GMBH (EXXPERT)

GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON PLIROFORIKIS
ETAIREIA PERIORISMENIS EFTHYNIS (UBITECH)

INTERNET INSTITUTE, COMMUNICATIONS SOLUTIONS AND CONSULTING LTD (ININ)

INCELLIGENT IDIOTIKI KEFALAIOUCHIKI ETAIREIA (INC)

SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (SUIT5)

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” (NCSRD)

UNIVERSITY OF BRISTOL (UNIVBRIS)

AALTO-KORKEAKOULUSAATIO (AALTO)

UNIVERSITY OF PIRAEUS RESEARCH CENTER (UPRC)

ITALTEL SPA (ITL)

BIBA - BREMER INSTITUT FUER PRODUKTION UND LOGISTIK GMBH (BIBA).

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the MATILDA Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement of
the authors of the document and all applicable portions of the copyright notice must be clearly
referenced.

Page 4 of 29

Deliverable 1.5

Table of Contents

DISCLAIMER .. 3

COPYRIGHT ... 3

TABLE OF CONTENTS ... 4

1 EXECUTIVE SUMMARY .. 5

2 INTRODUCTION .. 6

2.1 SCOPE OF THE DELIVERABLE ... 6

2.2 STRUCTURE OF THE DOCUMENT ... 6

3 POLICIES MANAGEMENT ARCHITECTURAL APPROACH... 7

3.1 POLICIES MANAGEMENT POSITIONING IN THE MATILDA ARCHITECTURE ... 7

3.2 POLICIES METAMODEL RELATIONSHIP WITH MATILDA METAMODELS ... 9

4 RUNTIME POLICIES METAMODEL ... 12

4.1 RUNTIME POLICIES FACETS ... 12

4.2 RUNTIME POLICIES DESCRIPTOR .. 16

4.3 RULE-BASED EXPRESSIONS ... 26

5 CONCLUSIONS ... 28

REFERENCES .. 29

Page 5 of 29

Deliverable 1.5

1 Executive Summary

This deliverable provides an overview of the policies metamodel defined within the
MATILDA project. Policies in MATILDA are related to deployment and runtime policies and
they are both associated with a developed application. Deployment policies regard mainly
deployment constraints defined on behalf of application developers, while runtime policies
regard set of expressions (event-condition-action rules) guiding operational decisions for
optimal execution of the applications, considering the overall execution and infrastructural
status context. Both policy types are of importance in the scope of the project, and their
enforcement is tackled by different components in the MATILDA architectural approach.

Deployment policies denoted by software developers are included within the produced slice
intent that is provided to telecom/infrastructure providers for the creation and management
of the appropriate network slice and the management of the allocated resources. Runtime
policies are denoted by service providers (e.g. cloud service providers, vertical industries
application providers) and regard the real-time and dynamic management of the application
control functions, including actions realised in the service mesh level as well as actions
realised in the network slice level. For the latter, the set of actions that can be realised
depends on the actions advertised on behalf of the communication service providers towards
the application/service providers through a northbound API.

Under this perspective, a set of facets are conceptualized for the description of policies
expressions, covering conditions and actions associated with orchestration components in the
various layers. Such policies expressions are included within an overall policies descriptor,
binded to an application. During deployment, the active policies are enforced leading to
enhanced and more intelligent operation of the orchestration mechanisms. These facets along
with the descriptor and indicative usage examples are detailed in this deliverable.

Page 6 of 29

Deliverable 1.5

2 Introduction

2.1 Scope of the Deliverable

The main scope of this deliverable regards the conceptualization of the policy metamodel in
MATILDA. Policies may consider deployment or runtime policies, each one of which aiming to
serve set of objectives. Deployment policies are used for optimal placement of an application
over a programmable infrastructure, taking into account set of defined constraints, mainly for
resource allocation purposes. Runtime policies are used for dynamic enforcement of actions
by the various orchestration mechanisms during the execution time of an application.

Deployment policies are denoted by software developers and made available in the form of
a descriptor accompanying the overall application graph descriptor. Such policies are
interpreted and lead to the production of the slice intent, that can be interpreted by the Slice
Manager during initial deployment of an application. Taking advantage of optimisation
mechanisms, an optimal (or close to optimal) deployment plan is produced, aiming to satisfy
the imposed constraints. Runtime policies are denoted by service providers and software
developers and made available in the form of a descriptor. Software developers, having
detailed knowledge of the developed software, are able to suggest set of expressions
(event/condition-action) that can be enforced during runtime and optimise the software
operation. Such expressions are accompanying the software and may be exploited by service
providers towards the definition of more advanced policies. For instance, a software
developer-defined scaling policy based on a resources-usage metric may be slightly modified
by a service provider through having a more holistic view of the overall infrastructure that
this application is going to be deployed.

Under this perspective, in this deliverable, focus is given on the definition of the runtime
policies metamodel consisted of the set of facets taken into account towards the definition of
expressions as well as the overall descriptor incorporating the defined expressions. As
already mentioned, with regards to the deployment policies, their description is included in
the form of constraints in the application graph and slice intent metamodels, as detailed in
D1.2 [3] and D1.4 [5].

It should be noted that -in addition to the metamodel defined in this section- within WP3, a
formal language for the validation of the appropriate specification of policies expressions is
going to be provided. Upon validation, the policy is going to be translated to the appropriate
format in order to be easily interpretable by the runtime policies engine.

2.2 Structure of the Document

The structure of the document is as follows: in section 3, the architectural approach
followed for runtime policies enforcement is provided, along with the exact positioning of the
policies components within the MATILDA architectural framework; in section 4, the main set
of facets considered for the specification of conditions and actions within the policies
expressions are detailed, along with the specification of the overall runtime policies
descriptor and the documentation of indicative examples regarding the way that defined
policies can be translated to Drools (the rule-based expression format adopted and being
interpretable by the policy engine); in section 5, overall conclusions and plans for usage of the
defined metamodel in the various WPs are provided.

Page 7 of 29

Deliverable 1.5

3 Policies Management Architectural Approach

3.1 Policies Management Positioning in the MATILDA Architecture

Polices management and enforcement in MATILDA is realised over the deployed application
graphs over the instantiated network slices. Based on monitoring information collected
through streams provided via the service mesh data and control plane, as well as the
communication service provider network monitoring infrastructure, inference mechanisms
are applied over the set of defined expressions consisting a policy. Various metrics and
functions are considered for both the conditions and actions part per policy, including metrics
related to application components configuration, resources usage and allocation, service mesh
functionality, component characterisation and network links monitoring and management.

It should be noted that policies management of the activated network services for
supporting a deployed application graph is considered as part of relevant frameworks
developed within various NFV Orchestrators (NFVOs) and, thus, it will be also tackled in
terms of adoption and potential extension of a relevant NFVO. However, policies enforcement
over the deployed application graph is considering actions requested by the network
management systems of a communication service provider, as they are provided through
northbound interfaces to the application/services providers.

The positioning of the Runtime Policies Manager within the MATILDA architecture, as
detailed at D1.1 [1] is depicted at Figure 3.1 (the main components and interactions denoted
in blue colour). Policies formulation is realized in the Policies Editor that is accessible by
application/service providers. The outcome of a policy formulation is the descriptor provided
in section 4.2. The descriptor is going to be validated in terms of correctness and compatibility
with a set of formal rules, as they are going to be included in a policies Domain Specific
Language (DSL) that is under specification in the framework of WP3 activities. A validated
policy description is going to be translated to Drools [2] and loaded to the Policy Manager
(Rule Engine) for supporting runtime policies enforcement upon the deployment of an
application graph. Monitoring streams providing data to be evaluated by the rule engine are
sent from monitoring mechanisms being active at the service mesh level (e.g. telemetry data),
the monitoring infrastructure of the communication service provider, as well as the analytics
engine (e.g. real-time analytic processes results).

Runtime policies management mechanisms in MATILDA are going to provide policies
enforcement over the deployed application graphs following a continuous match-resolve-act
approach. Specifically, the match phase regards the mapping of the set of applied rules that
are satisfied based on the data streams coming from the monitoring mechanisms, the resolve
phase regards the process of conflict resolution -if any- among the satisfied rules taking into
account the pre-defined salience of each rule, while the act phase regards the provision of a
set of suggested actions to the various orchestration components through the Execution
Manager. Policies enforcement is going to be realised through a rule-based framework that
attempts to derive execution instructions based on the current set of data and the active rules;
rules associated with the deployed service graphs over at each point of time. Specifically,
Drools is going to be used that is a Business Rules Management System (BRMS) solution [2].

Page 8 of 29

Deliverable 1.5

Figure 3.1 Policies Management Framework within Matilda

During the operational state of the service graph a set of independent, monitoring streams
are aggregated by a monitoring server. As it is depicted, these streams relate a) to
measurements that are provided by the telco provider per se (e.g. instrumentation of VIMs)
and b) to measurements that are pulled by the Service Graph orchestrator. These
measurements are directed to a Complex Event Processing (a.k.a. CEP) engine which is
responsible to execute time-window-based operations in the form of rules. The set of rules
that are active per stream-evaluation is addressed as Policy. Although many policies may be
defined for one graph only one can be active.

Based on the rules’ execution the orchestrator may fire some actions. These actions are
classified in two categories. The first type of action can be realized by the telco provider itself.
As depicted on Figure 1, the telco provider exposes a northbound interface to the service
orchestrator which ‘proxies’ the functional capabilities of telco programmability. These
capabilities span from allocation of virtualized resources (at the data center or at the edge
level) to the provisioning of specific quality class on the network traffic between UEs and
component interfaces. On the other hand, the second class of actions that will be supported
are telco-agnostic. According to the Service Mesh paradigm each component that participates
in the graph is programmable through a specific proxy. This proxy can handle multiple
commands such as Layer-7 balancing etc. The type of conditions and actions that will be

Page 9 of 29

Deliverable 1.5

supported are describe on Deliverable X.X[ref]. After examining the flow of the metamodels’
usage we will delve into the details of the Slice Intent and the Slice metamodel respectively.

Based on the Drools engine, the overall policies enforcement framework consists of the
working memory; facts based on the provided data, the production memory; set of defined
rules, and an inference engine that supports reasoning and conflict resolution over the
provided set of facts and rules as well as triggering of the appropriate actions (Figure 3.2).
Data is fed to the working memory through the various monitoring mechanisms. The
production memory is also fed by policies associated with the deployed application graphs, as
provided through the Policies Editor – the editor made available to application/service
providers for policies definition. The Policy Engine dynamically handles and converts the
collected data to working memory facts. Such facts can then be matched with already defined
rules on the active policies. An application graph may be associated with a set of policies,
however only one can be active during its deployment and execution time.

Figure 3.2 High-level View of a Production Rule System [2]

3.2 Policies Metamodel Relationship with MATILDA Metamodels

Before delving into the details of the Policy Metamodel, we provide an overview of the
positioning and usage of this model with regards with the set of developed metamodels. The
overall metamodel usage is graphically depicted on Figure 3.3 where the basic architectural
components of the MATILDA framework and their relationship with the various models is
provided.

An application graph placement flow starts with the selection of a vertical application that
has to be deployed and supported by a communication service provider. As clearly stated on
the architectural deliverable (D1.1[[1]]), MATILDA will support state of the art distributed
applications. Therefore, a vertical application in MATILDA consists of multiple components
that can be deployed on top of programmable infrastructure. These components when
combined to each other they formulate a direct acyclic graph (a.k.a. DAG) which represents a
vertical application. In other words, a vertical application is represented by a graph where

Page 10 of 29

Deliverable 1.5

components are vertexes and edges are the component-links. For the sake of clarity, MATILDA
imposed a formal metamodel of this graph which is analysed in Deliverable 1.2 [3].

Figure 3.3 Usage of MATILDA Metamodels

The Service Repository (see Figure 3.3) contains all the instances of the service graphs that
have been registered. The flow initiates by the selection of service graph by an
application/service provider. As depicted in Figure 3.2, there are two distinct administrative
zones. On the left part resides the administrative zone of the vertical application/service
orchestrator while on the right part the administrative zone of the telco (communication
service) provider. Hence, each administrative zone contains its own orchestration entity with
clear responsibilities. The orchestration entity on the left is responsible to instantiate a
vertical application that meets specific requirements on the virtualized resources that will be
provided by the orchestration mechanism of the right.

Taking under consideration the scope of the two orchestrators, we can easily infer that the
Application/Service Orchestrator and the Telco Orchestration mechanisms follow a
request/response pattern according to which the Service Orchestrator asks for a specific
“setup” that is capable to satisfy some characteristics/requirements and the telco provider
responds with the details of the environment that has to be used for the appropriate setup.

Page 11 of 29

Deliverable 1.5

The first request is addressed as Slice Intent while the latter as the offered Slice. Both
specifications are provided in the relevant metamodels, as detailed in D1.4 [5].

As a third step, the telco provider receives the slice intent and tries to find/create a proper
setup that will satisfy the set of denoted requirements in step 2. The solution that satisfies the
constraints will be announced back to the Service Graph Orchestrator. The solution will be an
instance of the Slice Metamodel. Part of the requirements request during deployment or
runtime may regard the activation or configuration of network services, able to provide the
requested network functionalities. Such services are provided by a NFVO, while the
representation is realised based on the metamodel defined in D1.3 [4].

Page 12 of 29

Deliverable 1.5

4 Runtime Policies Metamodel

4.1 Runtime Policies Facets

In MATILDA, each runtime policy consists of a set of expressions indicating the conditions
over which one or more actions are triggered. Conditions as well as actions may be related
with various stakeholders and mechanisms. Following, short reference to the basic set of
conditions and actions supported is provided. However, it should be noted that the provided
list is indicative and under continuous evaluation and extension during the project lifetime,
taking into account the requirements of the various demonstrators to be realised as well as
feedback collected via the design and development of the orchestration mechanisms.

Regarding the set of metrics to be included in the conditions part, a high-level view is
depicted at Figure 4.1. Metrics can be associated with functionality managed in the service
mesh level, configuration options of each component, resources usage metrics, component
profiling information, application graph metrics focusing mainly on virtual links QoS
characteristics as well as overall resources usage metrics of the instantiated network slices.

At the service mesh level, the metrics are monitored through the service mesh data plane
and may be related with any of the supported service mesh functions (e.g. load balancing,
authentication/authorization, health checking). Actually, each designed service may be
associated with a set of metrics that can be evaluated during runtime in order to guide
potential decisions, targeting mainly at the optimal operation of the service mesh functions.
Indicative metrics regard the number of workers managed by a load balancer, the
incoming/outgoing traffic measured through a telemetry service etc.

Component configuration metrics are related to metrics denoted on behalf of the
application developer as component specific metrics and made available through the
application graph descriptor. Such metrics can be also monitored during runtime, given that
monitoring mechanisms are implemented in the provided software and the metrics are
exposed as component configuration metrics. The variety of such metrics is huge, since they
regard implementation business logic of each application component. Indicative metrics
regard the number of served users, active sessions, average HTTP response time etc.

Resource usage metrics regard the average/min/max consumption of resources from the
deployed component image over the virtualized infrastructure. Such metrics are usually
monitored through the resource management entity of the communication service provider.
In MATILDA, resource usage metrics are going to be provided by the communication service
provider through a well-defined northbound interface. Indicative metrics include CPU usage,
memory consumption, allocated storage space, incoming/outgoing traffic rate etc.

Component characterization metrics regard the profiling result of a component and its
mapping with one or more characteristics. Profiling of a component may regard different
aspects, including -among others- characterization in terms of resource usage, operational
and reliability status, energy efficiency, security aspects etc. Indicative characteristics include
malicious, energy efficient, CPU intensive, network traffic intensive etc.

With regards to network link monitoring metrics, a set of QoS characteristics are
considered, as they can be mainly provided through the monitoring infrastructure of
communication service providers. Such metrics are provided through network monitoring

Page 13 of 29

Deliverable 1.5

functions supported by the communication service provider. These functions can be part of a
VNF or developed network monitoring mechanisms (e.g. providing network monitoring data
to an OSS/BSS system). Once again, the provided monitoring data is going to be made
available through well-defined northbound interfaces. Indicative metrics include end to end
delay, packet loss, throughput etc.

Finally, a set of metrics may also regard network slice management metrics, applied
mainly to actions related to dynamic management of network slice resources. These metrics
will be aggregate values of the overall resources consumption/usage metrics of the set of
application graphs and network services served through a network slice. Indicative metrics
include overall network slice resource (CPU, memory) consumption etc.

With regards to the actions part of a policy definition, a set of actions are defined based
on the targeted entity to apply them, namely application components, application graphs and
network monitoring and management systems of communication service providers. Prior to
detailing the set of potential actions, it should be noted that no specific binding between
conditions and actions exists, however some combinations may not be available, taking into
account that there is no related business logic.

Application component actions may be associated with a service mesh functionality (e.g.
change a load balancing policy, spawn or deprovision a number of VMs), a change in the
configuration of custom metrics of a component (e.g. change in the transcoding quality level),
a change in the resource allocated to the component (e.g. vertical scalability, migration
actions) etc.

Application graph actions are mainly service-mesh oriented and regard the application of
a function in the service mesh control plane (e.g. activate RBAC mechanisms, change traffic
management policy). Such actions are going to be triggered mainly by consuming information
collected via the service mesh data plane from various application components associated
proxies.

Network monitoring and management actions regard requests towards the OSS/BSS
systems of communication services providers and are based on the functions disseminated by
them through a northbound interface. Such actions are going to be triggered taking into
account the type of the action as well as the set of mechanisms supported by a communication
service provider (as they are going to be disseminated through a northbound interface).
Indicative actions regard the activation of an end to end monitoring mechanisms (e.g. for end
to end delay among two connection endpoints), deployment of a network function or service,
establishment of a VPN etc.

As already stated, the list of the aforementioned conditions and actions regard an
elaborated but not complete set of the potential conditions and actions that may take part in
policies expressions. This list is going to be open and extensible during the lifetime of the
project, based on the requirements and needs of the various demonstration activities that are
going to take place.

Page 14 of 29

Deliverable 1.5

Figure 4.1 Policies Conditions High Level View

Page 15 of 29

Deliverable 1.5

Figure 4.2 Policies Actions High Level View

Page 16 of 29

Deliverable 1.5

4.2 Runtime Policies Descriptor

In this section, the runtime policies descriptor in YAML format, along with an example with
an instance of such a descriptor based on an indicative policy is provided.

Runtime Policies Descriptor:

$schema: "http://json-schema.org/draft-04/schema#"

title: "Policy Descriptor Schema"

version: 0.1

description: "The core schema for Matilda policy descriptors."

Some definitions used later on.

definitions:

 time_units:

 enum:

 - "s" # seconds

 - "m" # minutes

 - "h" # hours

 - "d" # days

 aggregation_function:

 enum:

 - "avg" # average

 - "min" # min

 - "max" # max

 operator:

 enum:

 - "less" # less

 - "equal" # equal

 - "greater" # greater

 input:

 enum:

 - "number" # number

 - "select" # select

 logicalOperator:

 enum:

 - "AND" # AND

 - "OR" # OR

Page 17 of 29

Deliverable 1.5

 profile_tag:

 enum:

 - "under_attack" # under_attack

 - "mis_performed" # mis_performed

 - "low_energy" # mis_performed

 - "Green" # mis_performed

 action_type:

 enum:

 - "MeshActionType" # MeshActionType

 - "MonitoringAction" # MonitoringAction

 - "NetworkMechanismType" # NetworkMechanismType activated by

TelcoNorthBoundAPI

 - "InfrastructureType" # InfrastructureType

 - "Orchestration" # OrchestrationAction.

 - "LifecycleManagement" # LifecycleManagementAction

 - "AlterConfiguration" # AlterConfigurationAction

 - "ProfileType" # Add/remove a new profile

 - "Log" # Log

 action_description:

 enum:

 - "ApplyFlavour" # InfrastructureType

 - "Migrate" # InfrastructureType

 - "LoadBalancer.setBalancingAlgorithm" # MeshActionType

 - "Spawn" # MeshActionType

 - "Deprovision" # MeshActionType

 - "ChangeFaultRecoveryPolicy" # MeshActionType

 - "ApplyRBACKMechanism" # MeshActionType

 - "start" # LifecycleManagementAction

 - "stop" # LifecycleManagementAction

 - "restart" # LifecycleManagementAction

 - "EndToEndDelay" # MonitoringAction

 - "Jitter" # MonitoringAction

 - "Throughput" # MonitoringAction

 - "ProvideDedicatedBandwidth" # NetworkMechanismType

 - "SetupVPN" # NetworkMechanismType

 - "DeployNS" # NetworkMechanismType

 - "DeployVPN" # NetworkMechanismType

 - "setProfile" # ProfileType

 expression_type:

Page 18 of 29

Deliverable 1.5

 enum:

 - "ResourceUsageMetricType" # ResourceUsageMetricType

 - "MeshMetricType" # MeshMetricType

 - "QoSMetricType" # QoSMetricType.

 - "CustomMetricType" # CustomMetricType.

 expression_description:

 enum:

 - "TotalMemory" # ResourceUsageMetricType

 - "CPULoadUtilization" # ResourceUsageMetricType

 - "VCPU" # ResourceUsageMetricType

 - "RAMUtilization" # ResourceUsageMetricType

 - "hasProfile" # ProfileType

 - "EndToEndDelay" # QoSMetricType

 - "Security_TotalConnectionsIgnored" #

Security_TotalConnectionsIgnored

 - "Telemetry_InTraffic" # MeshMetricType

 expression:

 type: "object"

 properties:

 id:

 description: "The name of the expression parameter. The name has to be

supported by the service platform or the FSM."

 type: "string"

 field_0:

 description: "The field name of the expression parameter."

 type: "string"

 field_1:

 description: "A condition type"

 $ref: "#/definitions/expression_type"

 field_2:

 description: "A condition type"

 $ref: "#/definitions/expression_description"

 type:

 description: "The type of the parameter."

 type: "string"

 input:

 description: "The input type of the parameter."

 $ref: "#/definitions/input"

 operator:

Page 19 of 29

Deliverable 1.5

 description: "The operator of the expression."

 $ref: "#/definitions/operator"

 value:

 description: "The threshold value of the parameter."

 type: "string"

 required:

 - id

 - field_0

 - field_1

 - field_2

 - type

 - input

 - operator

 - value

 fullExpression:

 description: "A set of expressions bind between them with logical

operators."

 type: "object"

 properties:

 condition:

 description: "The operator AND / OR."

 $ref: "#/definitions/logicalOperator"

 rules:

 description: "The set of expressions."

 type: "array"

 items:

 description: "An FSM object of this VNF. FSMs are always Docker

containers."

 $ref: "#/definitions/expression"

 required:

 - condition

 - rules

 setOfExpressions:

 description: "An expression with the optional condition."

 type: "object"

 properties:

 rules:

 description: "The set of expressions."

 type: "array"

Page 20 of 29

Deliverable 1.5

 items:

 description: "An FSM object of this VNF. FSMs are always Docker

containers."

 $ref: "#/definitions/fullExpression"

 required:

 - rules

The actual document description.

type: "object"

properties:

 descriptor_schema:

 description: "Reference to the schema corresponding to the descriptor

(e.g., URL or local path)."

 type: "string"

 name:

 description: "The name of the policy description."

 type: "string"

 pattern: "^[a-z0-9\\-_.]+$"

 description:

 description: "A longer description of the policy."

 type: "string"

 policyRules:

 description: "A list of Policy rules used to compose this Policy."

 type: "array"

 items:

 description: "A rule of the current policy"

 type: "object"

 properties:

 name:

 description: "The name of the policy rule."

 type: "string"

 salience:

 description: "The salience of the policy rule."

 type: "number"

 inertia:

 description: "The inertia period of the policy rule."

 type: "object"

Page 21 of 29

Deliverable 1.5

 properties:

 value:

 description: "The duration value of the inertia period."

 type: "number"

 duration_unit:

 description: "The unit of the duration."

 ref: "#/definitions/time_units"

 required:

 - value

 - duration_unit

 duration:

 description: "The duration the condition has to be met before an

event is fired."

 type: "object"

 properties:

 value:

 description: "The duration value."

 type: "number"

 duration_unit:

 description: "The unit of the duration."

 ref: "#/definitions/time_units"

 required:

 - value

 - duration_unit

 aggregation:

 description: "The unit of the duration."

 ref: "#/definitions/aggregation_function"

 conditions:

 description: "The set of conditions, that must be met to fire the

event."

 ref: "#/definitions/setOfExpressions"

 actions:

 description: "A list of notifications that are fired when the

condition is met."

 type: "array"

 items:

 type: "object"

 properties:

 action_type:

 description: "The type of the action that is send to the

Page 22 of 29

Deliverable 1.5

message bus."

 ref: "#/definitions/action_type"

 name:

 description: "The description of the action"

 ref: "#/definitions/action_description"

 value:

 description: "The value of the action"

 type: "string"

 details:

 description: "The details of the action. Here are presented

custom actions"

 type: "string"

 profile_tag:

 description: "A profile tag"

 ref: "#/definitions/profile_tag"

 target:

 description: "The component to apply the action"

 type: "string"

 stability_period:

 description: "The inertia period of the policy rule."

 type: "object"

 properties:

 value:

 description: "The duration value of the inertia period."

 type: "number"

 duration_unit:

 description: "The unit of the duration."

 ref: "#/definitions/time_units"

 required:

 - value

 - duration_unit

 required:

 - action_type

 - target

 required:

 - name

 - duration

 - aggregation

 - conditions

Page 23 of 29

Deliverable 1.5

 - actions

 uniqueItems: true

 minItems: 1

required:

 - descriptor_schema

 - name

 - policyRules

additionalProperties: false

Runtime Policies Descriptor Instance:

default YAML description of an policy example

descriptor_schema: "https://gitlab.com/matilda-project/matilda-

metamodels/tree/master/policy-metamodel/policy-schema.yml"

name: "samplepolicyv1"

policyRules:

 - name: "highResourcesUtilization"

 salience: 1

 inertia:

 value: 30

 duration_unit: "m"

 duration:

 value: 10

 duration_unit: "m"

 aggregation : "avg"

 conditions:

 condition: AND

 rules:

 - id: componentX.ResourceUsageMetricType.CPULoadUtilization

 field_0: componentX

 field_1: ResourceUsageMetricType

 field_2: CPULoadUtilization

 type: double

 input: number

Page 24 of 29

Deliverable 1.5

 operator: greater

 value: '80'

 actions:

 - action_type: "MeshActionType"

 name: "Spawn"

 value: "2"

 target: "componentX"

 - name: "badQoS"

 salience: 1

 inertia:

 value: 30

 duration_unit: "m"

 duration:

 value: 10

 duration_unit: "m"

 aggregation : "avg"

 conditions:

 condition: AND

 rules:

 - id: virtualLinkΧ.QoSMetricType.EndToEndDelay

 field_0: virtualLinkΧ

 field_1: QoSMetricType

 field_2: EndToEndDelay

 type: double

 input: number

 operator: greater

 value: '40'

 - id: componentX.MeshMetricType.Telemetry_InTraffic

 field_0: componentX

 field_1: MeshMetricType

 field_2: Telemetry_InTraffic

 type: integer

 input: select

 operator: greater

 value: '100'

 actions:

 - action_type: "NetworkMechanismType"

 name: "ProvideDedicatedBandwidth"

Page 25 of 29

Deliverable 1.5

 value: "200"

 target: "virtualLinkΧ"

 - action_type: "Log"

 value: "Provide Dedicated Bandwith to virtualLinkΧ"

 target: "virtualLinkΧ"

 - name: "possibleSecurityAttack"

 duration:

 value: 10

 duration_unit: "m"

 aggregation : "avg"

 conditions:

 condition: AND

 rules:

 - id: componentX.MeshMetricType.Security_TotalConnectionsIgnored

 field_0: componentX

 field_1: MeshMetricType

 field_2: Security_TotalConnectionsIgnored

 type: double

 input: number

 operator: greater

 value: '5'

 actions:

 - action_type: "Profile"

 name: "setProfile"

 value: "under_attack"

 target: "componentX"

 - name: "applyFlavor"

 duration:

 value: 10

 duration_unit: "m"

 aggregation : "avg"

 conditions:

 condition: AND

 rules:

 - id: componentX.CustomMetricType.dbResponseTime

 field_0: componentX

 field_1: CustomMetricType

 field_2: dbResponseTime

Page 26 of 29

Deliverable 1.5

 type: double

 input: number

 operator: greater

 value: '100'

 actions:

 - action_type: "InfrastructureType"

 name: "ApplyFlavour"

 value: "3"

 target: "componentX"

4.3 Rule-based Expressions

Upon the specification and validation of a policy descriptor, the policy expressions are going
to be translated to Drools and imported in the policy engine. Following, indicative examples
with policies denoted in the Drools format are provided.

rule "highResourcesUtilization"

when

 $tot0 := java.lang.Double($tot0 >=80) from accumulate(

 $m0 := ComponentResourceUsageMetric(componentid== "componentX" &&

resourceUsageMetricType == ResourceUsageMetricType.CPULoadUtilization) over

window:time(1m)from entry-point "MonitoringStream" ,

 average($m0.getValue()))

then

 insertLogical(new

ComponentMeshAction("componentX",MeshActionType.SPAWN,"2"));

end
rule "badQoS"

when

 (

 $tot0 := java.lang.Double($tot0 >=40) from accumulate(

 $m0 := GraphQoSMetric(virtualLinkid== "virtualLinkΧ" && qoSMetricType ==

QoSMetricType.EndToEndDelay) over window:time(1m)from entry-point

"MonitoringStream" ,

 average($m0.getValue())) and

 $tot1 := java.lang.Double($tot1 >=100) from accumulate(

 $m1 := ComponentMeshMetric(componentid== "componentX" && meshMetricType==

MeshMetricType.Telemetry_InTraffic) over window:time(1m)from entry-point

"MonitoringStream" ,

 average($m1.getValue())))

then

 insertLogical(new

NetworkManagementAction("virtualLinkΧ",NetworkLinkFunction.ProvideDedicatedBandw

idth,"200"));

end
rule "possibleSecurityAttack"

when

 $tot0 := java.lang.Double($tot0 >=5) from accumulate(

 $m0 := ComponentMeshMetric(componentid== "componentX" && meshMetricType

== MeshMetricType.Security_TotalConnectionsIgnored) over window:time(1m)from

Page 27 of 29

Deliverable 1.5

entry-point "MonitoringStream" ,

 average($m0.getValue()))

then

 insertLogical(new ComponentTagAction("componentX",TagType.UNDER_ATTACK));

end

rule "applyFlavor"

when

 $tot0 := java.lang.Double($tot0 >=100) from accumulate(

 $m0 := ComponentCustomMetric(componentid== "componentX" && metricName ==

"dbResponseTime") over window:time(1m)from entry-point "MonitoringStream" ,

 average($m0.getValue()))

then

 insertLogical(new

ComponentResourceAllocationAction("componentX",ResourceAllocationType.APPLY_FLAV

OR,"3"));

end

Page 28 of 29

Deliverable 1.5

5 Conclusions

This deliverable provides the main foundation of the facets that are going to be included in
the runtime policies description in MATILDA, along with the format of the policies descriptor,
as well as some indicative examples of instantiation of the descriptor and the final description
of policies in Drools.

The outcome of this deliverable constitutes main input for the design and development of
all the runtime policies editing, management and enforcement mechanisms that are going to
be developed within WP2 and WP3. Furthermore, it constitutes a starting point towards the
definition of the runtime policies to be applied in each one of the MATILDA demonstrators, as
they are going to be detailed at D1.6 as well as within WP6.

The provided facets, including the set of conditions and actions, constitute an elaborated
version of the potential conditions and actions, however the overall list is going to be open
and extensible, targeting at fulfilling all the requirements that may be arisen during the
project lifetime.

Page 29 of 29

Deliverable 1.5

References

[1] D1.1 – MATILDA Framework and Reference Architecture, MATILDA H2020 Project,
Available Online: http://www.matilda-5g.eu/index.php/outcomes

[2] Drools Business Rules Management System, Available Online: https://www.drools.org/

[3] D1.2 – Chainable Application Component & 5G-ready Application Graph Metamodel,
MATILDA H2020 Project, Available Online: http://www.matilda-
5g.eu/index.php/outcomes

[4] D1.3 – VNF/PNF & VNF Forwarding Graph Metamodel, MATILDA H2020 Project,
Available Online: http://www.matilda-5g.eu/index.php/outcomes

[5] D1.4 – Network Slice Intent and Instance Metamodel, MATILDA H2020 Project, Available
Online: http://www.matilda-5g.eu/index.php/outcomes

http://www.matilda-5g.eu/index.php/outcomes
https://www.drools.org/
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes

	Deliverable D1.5
	Deployment and Runtime Policy Metamodel
	Disclaimer
	Copyright
	Table of Contents
	1 Executive Summary
	2 Introduction
	2.1 Scope of the Deliverable
	2.2 Structure of the Document

	3 Policies Management Architectural Approach
	3.1 Policies Management Positioning in the MATILDA Architecture
	3.2 Policies Metamodel Relationship with MATILDA Metamodels

	4 Runtime Policies Metamodel
	4.1 Runtime Policies Facets
	4.2 Runtime Policies Descriptor
	4.3 Rule-based Expressions

	5 Conclusions
	References

