
Page 1 of 51 

A Holistic, Innovative Framework for the Design, 
Development and Orchestration of 5G-ready 

Applications and Network Services over Sliced 
Programmable Infrastructure 

DELIVERABLE D1.3 

VNF/PNF & VNF FORWARDING GRAPH 

METAMODEL 

 

Due Date of Delivery: M9  Mx (28/02/2018 dd/mm/yyyy) 

Actual Date of Delivery: 06/03/2018  dd/mm/yyyy 

Workpackage: 
WP1 –  MATILDA Reference Architecture, 
Conceptualization and Use Cases 

Type of the Deliverable: OTHER 

Dissemination level: PU 

Editors: UNIVBRIS, ATOS, NCSRD, AALTO, UBITECH 

Version: 1.0 

Co-funded by  
the Horizon 2020 
Framework Programme 
of the European Union 

Call: 

H2020-ICT-2016-2 

Type of Action: 

IA 

Project Acronym: 

MATILDA 

Project ID: 

761898 

Duration: 

30 months 

Start Date: 

01/01/201  

Project Coordinator: 

Name: 
Franco Davoli 

Phone: 
+39 010 353 2732 

Fax: 
+39 010 353 2154 

e-mail: 
franco.davoli@cnit.it 

Technical Coordinator 

Name: 
Panagiotis Gouvas 

Phone: 
+30 216 5000 503 

Fax: 
+30 216 5000 599 

e-mail: 
pgouvas@ubitech.eu 

 



 

Page 2 of 51 

 

 

Deliverable D1.3 

 

 

List of the Authors 

UNIVBRIS UNIVERSITY OF BRISTOL 

Anderson Bravalheri, Reza Nejabati, Dimitra Simeonidou 

ATOS ATOS Spain SA 

Aurora Ramos, Javier Melian 

NCSRD NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” 

Eleni Trouva 

AALTO AALTO-KORKEAKOULUSÄÄTIÖ 

Tarik Taleb, Afolabi Ibrahim, Bagaa Miloud 

UBITECH GIOUMPITEK Meleti Schediasmos Ylopoiisi kai Polisi Ergon Pliroforikis EPE 

Panagiotis Gouvas, Anastasios Zafeiropoulos 



 

Page 3 of 51 

 

 

Deliverable D1.3 

 

Disclaimer 

The information, documentation and figures available in this deliverable are written by the 
MATILDA Consortium partners under EC co-financing (project H2020-ICT-761898) and do not 
necessarily reflect the view of the European Commission. 

The information in this document is provided “as is”, and no guarantee or warranty is given that 
the information is fit for any particular purpose. The reader uses the information at his/her sole 
risk and liability. 

Copyright 

Copyright © 2018 the MATILDA Consortium. All rights reserved. 

The MATILDA Consortium consists of: 

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI (CNIT) 

ATOS SPAIN SA (ATOS) 

ERICSSON TELECOMUNICAZIONI (ERICSSON) 

INTRASOFT INTERNATIONAL SA (INTRA) 

COSMOTE KINITES TILEPIKOINONIES AE (COSM) 

ORANGE ROMANIA SA (ORO) 

EXXPERTSYSTEMS GMBH (EXXPERT) 

GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON PLIROFORIKIS 
ETAIREIA PERIORISMENIS EFTHYNIS (UBITECH) 

INTERNET INSTITUTE, COMMUNICATIONS SOLUTIONS AND CONSULTING LTD (ININ) 

INCELLIGENT IDIOTIKI KEFALAIOUCHIKI ETAIREIA (INC) 

SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (SUIT5) 

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” (NCSRD) 

UNIVERSITY OF BRISTOL (UNIVBRIS) 

AALTO-KORKEAKOULUSAATIO (AALTO) 

UNIVERSITY OF PIRAEUS RESEARCH CENTER (UPRC) 

ITALTEL SPA (ITL) 

BIBA - BREMER INSTITUT FUER PRODUKTION UND LOGISTIK GMBH (BIBA). 

This document may not be copied, reproduced or modified in whole or in part for any purpose 
without written permission from the MATILDA Consortium. In addition to such written permission 
to copy, reproduce or modify this document in whole or part, an acknowledgement of the authors 
of the document and all applicable portions of the copyright notice must be clearly referenced. 



 

Page 4 of 51 

 

 

Deliverable D1.3 

 

Table of Contents 

DISCLAIMER .................................................................................................................................................. 3 

COPYRIGHT ................................................................................................................................................... 3 

TABLE OF CONTENTS ................................................................................................................................. 4 

1 EXECUTIVE SUMMARY ...................................................................................................................... 5 

2 INTRODUCTION .................................................................................................................................. 6 

3 NETWORK-RELATED METAMODELS OVERVIEW .................................................................... 7 

3.1 NETWORK SERVICE DESCRIPTOR ............................................................................................................... 7 

3.2 VIRTUAL NETWORK FUNCTION DESCRIPTOR............................................................................................ 7 

3.3 PHYSICAL NETWORK FUNCTION DESCRIPTOR .......................................................................................... 7 

3.4 VIRTUAL LINK DESCRIPTOR ........................................................................................................................ 8 

3.5 VNF FORWARDING GRAPH DESCRIPTOR .................................................................................................. 8 

4 DATA STRUCTURE AND MODELLING LANGUAGE ................................................................... 8 

5 METAMODELS ...................................................................................................................................... 9 

5.1 MODULE: NSD................................................................................................................................................ 9 

5.1.1 nsd:nsd-catalog ........................................................................................................................................... 9 

5.2 MODULE: VNFD ........................................................................................................................................... 24 

5.2.1 vnfd:vnfd-catalog .................................................................................................................................... 24 

5.3 MODULE: PNFD ........................................................................................................................................... 45 

5.3.1 pnfd:pnfd-catalog .................................................................................................................................... 45 

5.4 MODULE: VNFFGD ....................................................................................................................................... 46 

5.4.1 vnffgd:vnffgd-catalog ............................................................................................................................ 46 

5.5 MODULE: VLD .............................................................................................................................................. 48 

5.5.1 vld:vld-catalog .......................................................................................................................................... 48 

6 CONCLUSIONS ................................................................................................................................... 50 

7 REFERENCES ..................................................................................................................................... 51 

 

  



 

Page 5 of 51 

 

 

Deliverable D1.3 

 

1 Executive Summary 

The MATILDA Project aims to provide a unified framework for designing, developing and 
orchestrating 5G-ready applications. Such ambitious framework must be tailored to respond to 
the expectations of different users, from application developers to infrastructure providers, 
which do not necessarily share the same domain knowledge, and may even have conflicting 
interests. 

In this context, the development of a lingua franca is fundamental to allow all the users interact 
and collaborate to create a fruitful environment for not only technological development, but 
also new business creation. 

In MATILDA, this is accomplished by defining metamodels for every message exchange. These 
metamodels work as templates that contain logical (and possibly nested) properties needed to 
organize the information about the deployment and operational behaviour requirements of 
services, components, applications etc in a unified way. 

In particular, a subset of the MATILDA metamodels targets Network Services. As envisioned by 
the European Telecommunication Standards Institute (ETSI) [1], the metamodels related to 
Network Services are used in MATILDA to create a dynamic infrastructure, based on network 
functions virtualisation. The virtualisation of the resources enables ad-hoc provisioning and 
management of services, combined with extreme programmability as required in the upcoming 
5G networks. Additionally, the resulting hardware and software decoupling is beneficial to 
decrease CAPEX/OPEX and increase market competitiveness. 

MATILDA at the same time relies on and strengthens community efforts, by adopting the 
descriptors from the OSM community [2] as the basis for its network-related metamodels, 
whose main objective is to provide a uniform way to describe deployment and operational 
behaviour of network functions and network services and allow programmability in the 
lifecycle management of these components. 

As defined by MATILDA architecture [3], they will allow developers, service providers and 
infrastructure providers to collaborate in software development by means of publishing 
software to the Marketplace. Moreover, MATILDA Slice Broker will use them to realize the slice 
intent issued by the Application Orchestrator by means of matching the network requirements 
compiled from the Application Graph and Component models with the Network Services 
present in the Telecommunication Service Provider catalogue. 

This document presents an overall description of the metamodels required to specify a 
Network Service, more specifically, the Network Service Descriptor (NSD), Virtual Network 
Function Descriptor (VNFD), Physical Network Function Descriptor (PNFD), Virtual Network 
Function Forwarding Graph Descriptor (VNFFGD) and the Virtual Link Descriptor (VLD). It 
complements the work presented in the other work package 1 deliverables -in special the 
Reference Architecture in D1.1 [3] and the Slice Intent Metamodel in D1.4 [4]- and determine 
the base data structures for the implementation work that will be performed in work packages 
2, 3 and 4. 



 

Page 6 of 51 

 

 

Deliverable D1.3 

 

2 Introduction 

MATILDA Architecture [3] highlights two distinctive administrative zones involved in the 
creation of 5G-ready applications. The first administrative zone regards the “Application 
Orchestrator”, that usually resides with the vertical service provider and composes the top 
layer of the framework. This layer allows developers to easily create software components in a 
familiar way, by abstract some infrastructure implementation aspects, but still providing 
means of enforcing the proper provisioning of resources. 

The second administrative zone regards the infrastructure provider, a role usually played by 
telecommunication companies, and composes the lower layer of the framework. This layer is 
responsible for slicing the available infrastructure and allocating the required network and 
computational resources for running the applications of each tenant in an isolated way. 

The integration between those two layers is the responsibility of MATILDA’s Slice Broker, an 
entity capable of translating slice intents associated with the original application graph (as 
specified by the metamodels in D1.4 [5] and D1.2 [4]) into valid allocation requests to the 
Infrastructure Provider. In terms of network resources, slice intents are matched against a set 
of network services made available by the telecommunication company. 

 

Figure 1: Slice Intent and Network Service matching by the Slice Broker 

This process is illustrated in fig. 1 and requires the information about the network services to 
be organized according to models so the correct control details can flow between the Slice 
Broker and the telecommunication company operations and business support systems 
(OSS/BSS). Moreover, to have consistency between those entities, it is necessary to define a set 
of rules about how to write those modes. For each model the set of rules is also known as 
metamodel 

Additionally, MATILDA relies on the same models and metamodels to enable code sharing and 
collaboration within the community. When published to MATILDA Marketplace, network 
service models (and all the related constituents sub-models) can be adopted by the 
telecommunication companies, improving the availability of products and new features for 
their infrastructure. 



 

Page 7 of 51 

 

 

Deliverable D1.3 

 

In order to lower the barriers of adoption and contribute to 5G environment, the concept of 
Network Service (NS) in MATILDA, and therefore the related metamodels, derives directly from 
ETSI specification [1]. More precisely, MATILDA relies as much as possible in the Open Source 
MANO project [6] augmented descriptors -since those are the de facto standards, not only being 
supported and promoted by ETSI but also counting with a series of practical demonstrations 
that provide industrial-level implementation and validation- adding extra fields related to 
specific business logic. 

3 Network-related Metamodels Overview 

The following sections present a high-level description of these metamodels, discuss about the 
underlying data structures and details their implementation. 

3.1 Network Service Descriptor 

In MATILDA, the top-level metamodel regarding infrastructure provided by telecommunication 
companies is the Network Service Descriptor (NSD). This metamodel abstracts chains of 
network functions (i.e. functional blocks that compose the network and have well-defined 
external interfaces, usually performing some kind of operation or transformation with the data 
flow) while providing important information for the infrastructure orchestrator. 

The NSD specify a template from which instances of the same network service can be created 
but changing the input parameters. It contains the service description, including SLAs, 
deployment flavours, references to the virtual links, the constituent network functions, and to 
the forwarding graph that describes the data flow between them. Monitoring parameters and 
placement and scaling options can also be specified to instruct the infrastructure orchestrator. 

Within the infrastructure provider administrative zone of MATILDA, network services are used 
to provide interconnectivity between application components or user equipment in physically 
separated locations, realizing a network slice. 

3.2 Virtual Network Function Descriptor 

The Virtual Network Function Descriptor (VNFD) specify not only how a single network 
function can be deployed in a virtualised environment, but also how it should be managed 
overtime. Moreover, this descriptor enumerates all the external interfaces exposed by the VNF, 
so service chains can be created. 

It contains the VNF description and -since VNFs can be composed by separated software units- 
includes its internal decomposition in Virtual Network Function Components (VNFCs -also 
known as virtual deployment units, VDUs- usually virtual machine or container images), 
deployment flavours and references to the virtual links (internal or external). 

Additionally, it also contain a series of configuration scripts that are required for life-cycle 
management and their arbitrary input parameters. Computation resources are listed and 
similarly to the NSD, monitoring, placement and scaling options can be specified. 

3.3 Physical Network Function Descriptor 

The Physical Network Function Descriptor (PNFD) specify how a physical equipment that 
implements a network function can be connected to a chain of other network functions 



 

Page 8 of 51 

 

 

Deliverable D1.3 

 

(virtualised or not). This metamodel is very similar to the VNFD and have similar purposes, but 
it is used to describe physical network functions and not virtual, so properties required for 
supporting virtualisation are suppressed. 

The PNFD focus on the external interfaces required by the physical equipment and does not 
support placement and scaling options. 

3.4 Virtual Link Descriptor 

The Virtual Link Descriptor (VLD) contains the description of the virtual network links that 
compose the service, abstracting the interconnectivity between two different network 
functions (or VDUs). It also contains requirements about the network and stores information 
about the endpoints and type of connection. 

3.5 VNF Forwarding Graph Descriptor 

The VNF Forwarding Graph Descriptor (VNFFGD) describes the topology of the network 
service, by referencing network functions and virtual links. It contains the NS constituent VNFs, 
as well as their deployment in terms of network connectivity information. 

The VNFFGD allows the specification of classification rules, so the data traffic can be steered 
through the rendered service path (RSP). 

4 Data Structure and Modelling Language 

For a proper organization of the information, MATILDA -in compliance with ETSI [1]- makes 
use of a tree data structure, which follows the standard XML approach1 [7] for NSD and 
associated metamodels. In this data structure, each node has a name that identifies it, and can 
be seen as either a leaf node (when a value is provided) or a container node (when it contains 
one or more children nodes). Usually, leaf nodes are seen (and referred to as) properties of 
their parent nodes and must follow a specific computational type. 

Since, a XML-inspired tree data structure can be arbitrarily flexible, YANG modules [8] are used 
to shape the format of this tree. These modules are the main subject of this deliverable and are 
available in the source code repository. Modules, in the context of YANG, are the primary 
organization unit that define the nodes that should be attached to the root node of the tree data 
structure. Inside each module, nodes can define its own children and properties. 

Interestingly, YANG also enables the usage of list and leaflist nodes, using XML native features. 
These special nodes happen when containers and leaves (respectively) share the same name. 
YANG also allows referencing using XPath [9] expressions. 

                                                        
 
1 Despite of following the XML approach, the models do not have to be necessarily serialized 
using the XML language. 

https://gitlab.com/matilda-project/matilda-metamodels


 

Page 9 of 51 

 

 

Deliverable D1.3 

 

5 Metamodels 

The following subsections describe in detail the aforementioned tree data structure, as 
organized in the YANG modules. In most of the cases, the description provided is directly 
derived from the OSM Information Model [2] [10], as produced by the original authors, having 
been extracted via compilation. Modifications regarding MATILDA-specific business logic and 
decoupling from OSM implementation details were performed. The defined models are stored 
in the Gitlab repository [11] 

5.1 Module: nsd 

The following fields are defined: 

Field Type Description 

nsd-catalog  See: nsd:nsd-catalog 

5.1.1 nsd:nsd-catalog 

The following fields are defined: 

Field Type Description 

nsd list[1...N] See: nsd:nsd 

schema-
version 

string 
default: 
'v3.0' 

Schema version for the NSD. If unspecified, it assumes 
v3.0 

nsd:nsd 
The following fields are defined: 

Field Type Description 

category string[1...N] List of categories that can be used to group NS services 
providing similar features, e.g. firewalling, VPN, 
lawful-inspection, ids/ips. 

connection-
point 

list[1...N] List for external connection points. Each NS has one or 
more external connection points. As the name implies 
that external connection points are used for connecting 
the NS to other NS or to external networks. Each NS 
exposes these connection points to the orchestrator. 
The orchestrator can construct network service chains 
by connecting the connection points between different 
NS. 
See: nsd-base:connection-point 

constituent-
vnfd 

list[1...N] List of VNFDs that are part of this network service. 
See: nsd:constituent-vnfd 

description string Description of the NSD. 

id string 
length: (1, 
63) 

Identifier for the NSD. 

https://gitlab.com/matilda-project/matilda-metamodels


 

Page 10 of 51 

 

 

Deliverable D1.3 

 

initial-
service-
primitive 

list[1...N] Initial set of service primitives for NSD. 
See: nsd-base:initial-service-primitive 

input-
parameter-
xpath 

list[1...N] List of xpaths to parameters inside the NSD the can be 
customized during the instantiation. 
See: manotypes:input-parameter-xpath 

ip-profiles list[1...N] List of IP Profiles. IP Profile describes the IP 
characteristics for the Virtual-Link 
See: manotypes:ip-profiles 

key-pair list[1...N] Used to configure the list of public keys to be injected as 
part of ns instantiation 
See: nsd-base:key-pair 

license  Software license applied to the network service 
See: nsd-base:license 

logical-type string Different network services can be implemented in 
different ways, but perform basically a similar job with 
equivalent logical operations and similar connectivity. 
This field should be used to identify a high-level type 
that abstract the chosen implementation, allowing 
similar network services to be identified. 

logo string File path for the vendor specific logo. For example 
icons/mylogo.png. The logo should be part of the 
network service 

monitoring-
param 

list[1...N] See: nsd:monitoring-param 

name string NSD name. 

parameter-
pool 

list[1...N] Pool of parameter values which must be pulled from 
during configuration 
See: nsd-base:parameter-pool 

placement-
groups 

list[1...N] List of placement groups at NS level 
See: nsd:placement-groups 

scaling-
group-
descriptor 

list[1...N] scaling group descriptor within this network service. 
The scaling group defines a group of VNFs, and the ratio 
of VNFs in the network service that is used as target for 
scaling action 
See: nsd-base:scaling-group-descriptor 

service-
primitive 

list[1...N] Network service level service primitives. 
See: nsd:service-primitive 

short-name string Short name to appear as label in the UI 

terminate-
service-
primitive 

list[1...N] Set of service primitives during termination for NSD. 
See: nsd-base:terminate-service-primitive 

user list[1...N] List of users to be added through cloud-config 
See: nsd-base:user 

vendor string Vendor of the NSD. 



 

Page 11 of 51 

 

 

Deliverable D1.3 

 

version string Version of the NSD 

vld list[1...N] See: nsd:vld 

vnf-
dependency 

list[1...N] List of VNF dependencies. 
See: nsd:vnf-dependency 

vnffgd list[1...N] List of VNF Forwarding Graph Descriptors (VNFFGD). 
See: nsd-base:vnffgd 

nsd-base:connection-point 

List for external connection points. Each NS has one or more external connection points. As the 
name implies that external connection points are used for connecting the NS to other NS or to 
external networks. Each NS exposes these connection points to the orchestrator. The 
orchestrator can construct network service chains by connecting the connection points 
between different NS. 

The following fields are defined: 

Field Type Description 

name string Name of the NS connection point. 

type connection-point-type Type of the connection point. 

• VPORT: Virtual Port 

• VNIC_ADDR: Virtual NIC Address 

• PNIC_ADDR: Physical NIC Address 

• PPORT: Physical Port. 

nsd:constituent-vnfd 

List of VNFDs that are part of this network service. 

The following fields are defined: 

Field Type Description 

member-
vnf-index 

uint64 Identifier/index for the VNFD. This separate id is required to 
ensure that multiple VNFs can be part of single NS 

start-by-
default 

boolean 
default: 
'true' 

VNFD is started as part of the NS instantiation 

vnfd-id-
ref 

leafref Identifier for the VNFD. 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

nsd-base:initial-service-primitive 

Initial set of service primitives for NSD. 

The following fields are defined: 

Field Type Description 

name string Name of the configuration primitive. 

parameter list[1...N] See: manotypes:parameter 



 

Page 12 of 51 

 

 

Deliverable D1.3 

 

seq uint64 Sequence number for the configuration primitive. 

user-defined-script string A user defined script. 

manotypes:parameter 

The following fields are defined: 

Field Type Description 

name string Name of the configuration parameter. 

value string Value of the configuration primitive. 

manotypes:input-parameter-xpath 

List of xpaths to parameters inside the NSD the can be customized during the instantiation. 

The following fields are defined: 

Field Type Description 

default-value string Default Value for the Input Parameter 

label string A descriptive string 

xpath string An xpath that specifies the element in a descriptor. 

manotypes:ip-profiles 

List of IP Profiles. IP Profile describes the IP characteristics for the Virtual-Link 

The following fields are defined: 

Field Type Description 

description string Description for IP profile 

ip-profile-params  See: manotypes:ip-profile-params 

name string Name of the IP-Profile 

manotypes:ip-profile-params 

The following fields are defined: 

Field Type Description 

dhcp-params  See: manotypes:dhcp-params 

dns-server list[1...N] See: manotypes:dns-server 

gateway-address ip-address IP Address of the default gateway associated with IP 
Profile 

ip-version ip-version 
default: 
'ipv4' 

Possible values: unknown, ipv4 and ipv6 

security-group string Name of the security group 

subnet-address ip-prefix Subnet IP prefix associated with IP Profile 

subnet-prefix-
pool 

string VIM Specific reference to pre-created subnet prefix 



 

Page 13 of 51 

 

 

Deliverable D1.3 

 

manotypes:dhcp-params 

The following fields are defined: 

Field Type Description 

count uint32 Size of the DHCP pool associated with DHCP domain 

enabled boolean 
default: 
'true' 

This flag indicates if DHCP is enabled or not 

start-
address 

ip-address Start IP address of the IP-Address range associated with 
DHCP domain 

manotypes:dns-server 

The following fields are defined: 

Field Type Description 

address ip-address List of DNS Servers associated with IP Profile 

nsd-base:key-pair 

Used to configure the list of public keys to be injected as part of ns instantiation 

The following fields are defined: 

Field Type Description 

key string Key associated with this key pair 

name string Name of this key pair 

nsd-base:license 

Software license applied to the network service 

The following fields are defined: 

Field Type Description 

notice string Text indicating the license under which the software used by the NS is 
released. Usually contains a short note and a reference (e.g. URL) to the 
complete document. 
For example, when using the open source license MPLv2, the author may 
consider including: 

This Source Code Form is subject to the 
terms of the Mozilla Public License, v. 2.0. If a 
copy of the MPL was not distributed with 
this file, You can obtain one at 
https://mozilla.org/MPL/2.0/. 

short-
id 

string Short identifier related to the license type, as listed in the tl;dr legal 
website. For example: 

• agpl3 

• apache2 

https://tldrlegal.com/


 

Page 14 of 51 

 

 

Deliverable D1.3 

 

• artistic-2.0 

• bsd3 

• cc0-1.0 

• custom 

• epl 

• freebsd 

• gpl-2.0 

• gpl-3.0 

• isc 

• lgpl-2.1 

• lgpl-3.0 

• mit 

• mpl-2.0 

• opensource 

• proprietary 

• public-domain 

O.B.S.: proprietary, opensource and custom values allow a very flexible 
usage for this field, but should be complemented with an explicative text 
notice. 

nsd:monitoring-param 

The following fields are defined: 

Field Type Description 

aggregation-type aggregation-
type 

Possible values: 

• AVERAGE 

• MINIMUM 

• MAXIMUM 

• COUNT 

• SUM 

description string  

group-tag string A tag to group monitoring parameters 

id string  

name string  

numeric-
constraints 

 See: manotypes:numeric-constraints 

text-constraints  See: manotypes:text-constraints 

units string Measured Counter Units (e.g., Packets, Kbps, 
Mbps, etc.) 

value-decimal decimal64 Current value for a decimal parameter 

value-integer int64 Current value for an integer parameter 



 

Page 15 of 51 

 

 

Deliverable D1.3 

 

value-string string Current value for a string parameter 

value-type param-value-
type 
default: 'INT' 

The type of the parameter value: 

• INT 

• DECIMAL 

• STRING 

vnfd-monitoring-
param 

list[1...N] A list of VNFD monitoring params 
See: nsd:vnfd-monitoring-param 

widget-type widget-type 
default: 
'COUNTER' 

Defines the UI Display variant of measured 
counters. 

manotypes:numeric-constraints 

The following fields are defined: 

Field Type Description 

max-value uint64 Maximum value for the parameter 

min-value uint64 Minimum value for the parameter 

manotypes:text-constraints 

The following fields are defined: 

Field Type Description 

max-length uint8 Maximum string length for the parameter 

min-length uint8 Minimum string length for the parameter 

nsd:vnfd-monitoring-param 

A list of VNFD monitoring params 

The following fields are defined: 

Field Type Description 

member-vnf-
index-ref 

leafref Mandatory reference to member-vnf within constituent-
vnfds 
'../../../constituent-vnfd/member-vnf-index' 

vnfd-id-ref leafref A reference to a VNFD. This is a leafref 
'../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 

vnfd-monitoring-
param-ref 

leafref A reference to the VNFD monitoring param 
'/vnfd:vnfd-catalog/vnfd:vnfd[vnfd:id = 
current()/../vnfd-id-ref]/vnfd:monitoring-
param/vnfd:id' 

nsd-base:parameter-pool 

Pool of parameter values which must be pulled from during configuration 

The following fields are defined: 

Field Type Description 



 

Page 16 of 51 

 

 

Deliverable D1.3 

 

name string Name of the configuration value pool 

range  Create a range of values to populate the pool with 
See: nsd-base:range 

nsd-base:range 

Create a range of values to populate the pool with 

The following fields are defined: 

Field Type Description 

end-value uint32 Generated pool values stop at this value 

start-value uint32 Generated pool values start at this value 

nsd:placement-groups 

List of placement groups at NS level 

The following fields are defined: 

Field Type Description 

member-vnfd list[1...N] List of VNFDs that are part of this placement group 
See: nsd:member-vnfd 

name string Place group construct to define the compute resource 
placement strategy in cloud environment 

requirement string This is free text space used to describe the 
intent/rationale behind this placement group. This is for 
human consumption only 

strategy enumeration 
default: 
'COLOCATION' 

Strategy associated with this placement group Following 
values are possible: 

• COLOCATION: Colocation strategy imply intent to share 
the physical infrastructure (hypervisor/network) 
among all members of this group. 

• ISOLATION: Isolation strategy imply intent to not 
share the physical infrastructure 
(hypervisor/network) among the members of this 
group. 

nsd:member-vnfd 

List of VNFDs that are part of this placement group 

The following fields are defined: 

Field Type Description 

member-vnf-
index-ref 

leafref Member VNF index of this member VNF 
'../../../constituent-vnfd/member-vnf-index' 

vnfd-id-ref leafref Identifier for the VNFD. 
'../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 



 

Page 17 of 51 

 

 

Deliverable D1.3 

 

nsd-base:scaling-group-descriptor 

scaling group descriptor within this network service. The scaling group defines a group of VNFs, 
and the ratio of VNFs in the network service that is used as target for scaling action 

The following fields are defined: 

Field Type Description 

max-
instance-
count 

uint32 
default: '10' 

Maximum instances of this scaling group that are allowed in 
a single network service. The network service scaling will 
fail, when the number of service group instances exceed the 
max-instance-count specified. 

min-
instance-
count 

uint32 
default: '0' 

Minimum instances of the scaling group which are allowed. 
These instances are created by default when the network 
service is instantiated. 

name string Name of this scaling group. 

scaling-
config-
action 

list[1...N] List of scaling config actions 
See: nsd-base:scaling-config-action 

scaling-
policy 

list[1...N] See: nsd-base:scaling-policy 

vnfd-member list[1...N] List of VNFs in this scaling group 
See: nsd-base:vnfd-member 

nsd-base:scaling-config-action 

List of scaling config actions 

The following fields are defined: 

Field Type Description 

ns-service-primitive-name-
ref 

leafref Reference to the NS service primitive 
'../../../service-
primitive/name' 

trigger scaling-
trigger 

scaling trigger 

nsd-base:scaling-policy 

The following fields are defined: 

Field Type Description 

cooldown-time uint32 The duration after a scaling-in/scaling-out action 
has been triggered, for which there will be no 
further optional 

enabled boolean 
default: 'true' 

Specifies if the scaling policy can be applied 

name string Name of the scaling policy 



 

Page 18 of 51 

 

 

Deliverable D1.3 

 

scale-in-
operation-type 

scaling-
criteria-
operation 
default: 'AND' 

Operation to be applied to check between scaling 
criteria to check if the scale in threshold condition 
has been met. Defaults to AND 

scale-out-
operation-type 

scaling-
criteria-
operation 
default: 'OR' 

Operation to be applied to check between scaling 
criteria to check if the scale out threshold condition 
has been met. Defauls to OR 

scaling-
criteria 

list[1...N] list of conditions to be met for generating scaling 
requests 
See: nsd-base:scaling-criteria 

scaling-type scaling-policy-
type 

Type of scaling 

threshold-time uint32 The duration for which the criteria must hold true 

nsd-base:scaling-criteria 

list of conditions to be met for generating scaling requests 

The following fields are defined: 

Field Type Description 

name string  

ns-monitoring-
param-ref 

leafref Reference to the NS level monitoring parameter that is 
aggregated 
'../../../../monitoring-param/id' 

scale-in-threshold uint64 Value below which scale-in requests are generated 

scale-out-threshold uint64 Value above which scale-out requests are generated 

nsd-base:vnfd-member 

List of VNFs in this scaling group 

The following fields are defined: 

Field Type Description 

count uint32 
default: 
'1' 

count of this member VNF within this scaling group. The count 
allows to define the number of instances when a scaling action 
targets this scaling group 

member-vnf-
index-ref 

leafref member VNF index of this member VNF 
'../../../constituent-vnfd/member-vnf-index' 

nsd:service-primitive 

Network service level service primitives. 

The following fields are defined: 

Field Type Description 

name string Name of the service primitive. 

parameter list[1...N] List of parameters for the service primitive. 



 

Page 19 of 51 

 

 

Deliverable D1.3 

 

See: nsd:parameter 
parameter-group list[1...N] Grouping of parameters which are logically grouped 

in UI 
See: manotypes:parameter-group 

user-defined-
script 

string A user defined script. 

vnf-primitive-
group 

list[1...N] List of service primitives grouped by VNF. 
See: nsd:vnf-primitive-group 

nsd:parameter 

List of parameters for the service primitive. 

The following fields are defined: 

Field Type Description 

data-type parameter-data-
type 

Data type associated with the name. 

default-
value 

string The default value for this field 

hidden boolean 
default: 'false' 

The value should be hidden by the UI. Only applies to 
parameters with default values. 

mandatory boolean 
default: 'false' 

Is this field mandatory 

name string Name of the parameter. 

parameter-
pool 

string NSD parameter pool name to use for this parameter 

read-only boolean 
default: 'false' 

The value should be dimmed by the UI. Only applies to 
parameters with default values. 

manotypes:parameter-group 

Grouping of parameters which are logically grouped in UI 

The following fields are defined: 

Field Type Description 

mandatory boolean 
default: 'true' 

Is this parameter group mandatory 

name string Name of the parameter group 

parameter list[1...N] List of parameters for the service primitive. 
See: manotypes:parameter 

nsd:vnf-primitive-group 

List of service primitives grouped by VNF. 

The following fields are defined: 

Field Type Description 



 

Page 20 of 51 

 

 

Deliverable D1.3 

 

member-vnf-
index-ref 

leafref Reference to member-vnf within constituent-vnfds 
'../../../constituent-vnfd/member-vnf-index' 

primitive list[1...N] See: nsd:primitive 

vnfd-id-ref leafref A reference to a VNFD. This is a leafref 
'../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 

vnfd-name leafref Name of the VNFD 
'/vnfd:vnfd-catalog/vnfd:vnfd[vnfd:id = 
current()/../vnfd-id-ref]/vnfd:name' 

nsd:primitive 

The following fields are defined: 

Field Type Description 

index uint32 Index of this primitive 

name string Name of the primitive in the VNF primitive 

nsd-base:terminate-service-primitive 

Set of service primitives during termination for NSD. 

The following fields are defined: 

Field Type Description 

name string Name of the configuration primitive. 

parameter list[1...N] See: manotypes:parameter 

seq uint64 Sequence number for the configuration primitive. 

user-defined-script string A user defined script. 

nsd-base:user 

List of users to be added through cloud-config 

The following fields are defined: 

Field Type Description 

key-pair list[1...N] Used to configure the list of public keys to be injected as part of 
ns instantiation 
See: nsd-base:key-pair 

name string Name of the user 

user-
info 

string The user name’s real name 

nsd:vld 

The following fields are defined: 

Field Type Description 

description string Description of the VLD. 



 

Page 21 of 51 

 

 

Deliverable D1.3 

 

id string Identifier for the VLD. 

leaf-bandwidth uint64 For ELAN this is the bandwidth of branches. 

mgmt-network boolean 
default: 
'false' 

Flag indicating whether this network is a VIM 
management network 

name string Virtual Link Descriptor (VLD) name. 

provider-
network 

 Container for the provider network. 
See: manotypes:provider-network 

root-bandwidth uint64 For ELAN this is the aggregate bandwidth. 

short-name string Short name to appear as label in the UI 

type virtual-
link-type 

Type of virtual link. Possible values: 

• ELAN: A multipoint service connecting a set of 
VNFs 

• ELINE: For a simple point to point connection 
between a VNF and the existing network. 

• ETREE: A multipoint service connecting one or 
more roots and a set of leaves, but preventing 
inter-leaf communication. 

vendor string Provider of the VLD. 

version string Version of the VLD 

vnfd-
connection-
point-ref 

list[1...N] A list of references to connection points. 
See: nsd:vnfd-connection-point-ref 

Deviation: init-params 

Extra parameters for VLD instantiation 

Depending on the value of init-params, vld may have additional fields. 

When init-params is 'vim-network-profile' 

The following fields are defined: 

Field Type Description 

ip-profile-ref leafref Named reference to IP-profile object 
'../../ip-profiles/name' 

When init-params is 'vim-network-ref' 

The following fields are defined: 

Field Type Description 

vim-network-
name 

string Name of network in VIM account. This is used to indicate pre-
provisioned network name in cloud account. 

manotypes:provider-network 

Container for the provider network. 



 

Page 22 of 51 

 

 

Deliverable D1.3 

 

The following fields are defined: 

Field Type Description 

physical-
network 

string Name of the physical network on which the provider network 
is built. 

segmentation_id uint32 ID of segregated virtual networks 

nsd:vnfd-connection-point-ref 

A list of references to connection points. 

The following fields are defined: 

Field Type Description 

ip-address ip-
address 

IP address of the connection point 

member-vnf-
index-ref 

leafref Reference to member-vnf within constituent-vnfds 
'../../../constituent-vnfd/member-vnf-index' 

vnfd-
connection-
point-ref 

leafref A reference to a connection point name 
'/vnfd:vnfd-catalog/vnfd:vnfd[vnfd:id = 
current()/../vnfd-id-ref]/vnfd:connection-
point/vnfd:name' 

vnfd-id-ref leafref A reference to a VNFD 
'../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 

nsd:vnf-dependency 

List of VNF dependencies. 

The following fields are defined: 

Field Type Description 

vnf-depends-on-ref leafref Reference to VNF that sorce VNF depends. 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

vnf-source-ref leafref '/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

nsd-base:vnffgd 

List of VNF Forwarding Graph Descriptors (VNFFGD). 

The following fields are defined: 

Field Type Description 

classifier list[1...N] List of classifier rules. 
See: nsd-base:classifier 

description string Description of the VNFFGD. 

id string Identifier for the VNFFGD. 

name string VNFFGD name. 

rsp list[1...N] List of Rendered Service Paths (RSP). 
See: nsd-base:rsp 



 

Page 23 of 51 

 

 

Deliverable D1.3 

 

short-name string Short name to appear as label in the UI 

vendor string Provider of the VNFFGD. 

version string Version of the VNFFGD 

nsd-base:classifier 

List of classifier rules. 

The following fields are defined: 

Field Type Description 

id string Identifier for the classifier rule. 

match-
attributes 

list[1...N] List of match attributes. 
See: nsd-base:match-attributes 

member-vnf-
index-ref 

leafref Reference to member-vnf within constituent-vnfds 
'../../../constituent-vnfd/member-vnf-index' 

name string Name of the classifier. 

rsp-id-ref leafref A reference to the RSP. 
'../../rsp/id' 

vnfd-
connection-
point-ref 

string A reference to a connection point name in a vnfd. 

vnfd-id-ref leafref A reference to a vnfd. 
'../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 

nsd-base:match-attributes 

List of match attributes. 

The following fields are defined: 

Field Type Description 

destination-ip-address ip-address Destination IP address. 

destination-port port-number Destination port number. 

id string Identifier for the classifier match attribute rule. 

ip-proto uint8 IP Protocol. 

source-ip-address ip-address Source IP address. 

source-port port-number Source port number. 

nsd-base:rsp 

List of Rendered Service Paths (RSP). 

The following fields are defined: 

Field Type Description 

id string Identifier for the RSP. 

name string RSP name. 



 

Page 24 of 51 

 

 

Deliverable D1.3 

 

vnfd-connection-point-ref list[1...N] A list of references to connection points. 
See: nsd-base:vnfd-connection-point-ref 

nsd-base:vnfd-connection-point-ref 

A list of references to connection points. 

The following fields are defined: 

Field Type Description 

member-vnf-
index-ref 

leafref Reference to member-vnf within constituent-vnfds 
'../../../../constituent-vnfd/member-vnf-index' 

order uint8 A number that denotes the order of a VNF in a chain 

vnfd-connection-
point-ref 

string A reference to a connection point name in a vnfd. 

vnfd-id-ref leafref A reference to a vnfd. 
'../../../../constituent-vnfd[member-vnf-index = 
current()/../member-vnf-index-ref]/vnfd-id-ref' 

5.2 Module: vnfd 

The following fields are defined: 

Field Type Description 

vnfd-catalog  Virtual Network Function Descriptor (VNFD). 
See: vnfd:vnfd-catalog 

5.2.1 vnfd:vnfd-catalog 

Virtual Network Function Descriptor (VNFD). 

The following fields are defined: 

Field Type Description 

schema-
version 

string 
default: 
'v3.0' 

Schema version for the VNFD. If unspecified, it assumes 
v3.0 

vnfd list[1...N] See: vnfd:vnfd 

vnfd:vnfd 
The following fields are defined: 

Field Type Description 

category string[1...N] List of categories that can be used to group VNFs 
providing similar features, e.g. security, cache, load-
balancing, … 

connection-
point 

list[1...N] List for external connection points. Each VNF has one 
or more external connection points that connect the 
VNF to other VNFs or to external networks. Each VNF 
exposes connection points to the orchestrator, which 
can construct network services by connecting the 



 

Page 25 of 51 

 

 

Deliverable D1.3 

 

connection points between different VNFs. The NFVO 
will use VLDs and VNFFGs at the network service level 
to construct network services. 
See: vnfd-base:connection-point 

description string Description of the VNFD. 

http-endpoint list[1...N] List of http endpoints to be used by monitoring 
params 
See: manotypes:http-endpoint 

id string 
length: (1, 63) 

Identifier for the VNFD. 

internal-vld list[1...N] List of Internal Virtual Link Descriptors (VLD). The 
internal VLD describes the basic topology of the 
connectivity such as E-LAN, E-Line, E-Tree. between 
internal VNF components of the system. 
See: vnfd-base:internal-vld 

ip-profiles list[1...N] List of IP Profiles. IP Profile describes the IP 
characteristics for the Virtual-Link 
See: manotypes:ip-profiles 

license  Software license applied to the VNF 
See: vnfd-base:license 

logical-type string Different network functions can be implemented in 
different ways, but perform basically equivalent 
logical operations. 
This field should be used to identify a high-level type 
that abstract the chosen implementation, allowing 
similar VNFs to be identified. 
Examples: firewall, cdn, ids, sbc, cpe, reverse-proxy … 

logo string Vendor logo for the Virtual Network Function 

mgmt-
interface 

 Interface over which the VNF is managed. 
See: vnfd-base:mgmt-interface 

monitoring-
param 

list[1...N] List of monitoring parameters at the network service 
level 
See: manotypes:monitoring-param 

name string VNFD name. 

operational-
status 

vnf-
operational-
status 

The operational status of the VNF 

• init : The VNF has just started. 

• running : The VNF is active in VM 

• upgrading : The VNF is being upgraded 
(EXPERIMENTAL) 

• terminate : The VNF is being terminated 

• terminated : The VNF is in the terminated state. 

• failed : The VNF instantiation failed. 

placement-
groups 

list[1...N] List of placement groups at VNF level 
See: vnfd-base:placement-groups 



 

Page 26 of 51 

 

 

Deliverable D1.3 

 

service-
function-
chain 

enumeration 
default: 
'UNAWARE' 

Type of node in Service Function Chaining 
Architecture 

service-
function-type 

string Type of Service Function. 
NOTE: This needs to map with Service Function Type 
in ODL to support VNFFG. Service Function Type is 
mandatory param in ODL SFC. 

short-name string Short name to appear as label in the UI 

vdu list[1...N] List of Virtual Deployment Units 
See: vnfd-base:vdu 

vdu-
dependency 

list[1...N] List of VDU dependencies. 
See: vnfd-base:vdu-dependency 

vendor string Vendor of the VNFD. 

version string Version of the VNFD 

vnf-
configuration 

 See: vnfd-base:vnf-configuration 

vnfd-base:connection-point 

List for external connection points. Each VNF has one or more external connection points that 
connect the VNF to other VNFs or to external networks. Each VNF exposes connection points to 
the orchestrator, which can construct network services by connecting the connection points 
between different VNFs. The NFVO will use VLDs and VNFFGs at the network service level to 
construct network services. 

The following fields are defined: 

Field Type Description 

id string Identifier for the internal connection 
points 

name string Name of the connection point 

port-security-
enabled 

boolean Enables the port security for the port 

short-name string Short name to appear as label in the UI 

type connection-point-
type 

Type of the connection point. 

manotypes:http-endpoint 

List of http endpoints to be used by monitoring params 

The following fields are defined: 

Field Type Description 

headers list[1...N] Custom HTTP headers to put on HTTP request 
See: manotypes:headers 

https boolean Pick HTTPS instead of HTTP , Default is false 



 

Page 27 of 51 

 

 

Deliverable D1.3 

 

default: 
'false' 

method http-method 
default: 'GET' 

Method that the URI should perform. Default 
action is GET. 

password string The HTTP basic auth password 

path string The HTTP path on the management server 

polling-interval-
secs 

uint8 
default: '2' 

The HTTP polling interval in seconds 

port port-number The HTTP port to connect to 

username string The HTTP basic auth username 

manotypes:headers 

Custom HTTP headers to put on HTTP request 

The following fields are defined: 

Field Type Description 

key string HTTP header key 

value string HTTP header value 

vnfd-base:internal-vld 

List of Internal Virtual Link Descriptors (VLD). The internal VLD describes the basic topology 
of the connectivity such as E-LAN, E-Line, E-Tree. between internal VNF components of the 
system. 

The following fields are defined: 

Field Type Description 

description string Text describing the VLD 

id string Identifier for the VLD 

internal-
connection-
point 

list[1...N] List of internal connection points in this VLD 
See: vnfd-base:internal-connection-point 

leaf-bandwidth uint64 For ELAN this is the bandwidth of branches. 

name string Name of the internal VLD 

provider-
network 

 Container for the provider network. 
See: manotypes:provider-network 

root-bandwidth uint64 For ELAN this is the aggregate bandwidth. 

short-name string Short name to appear as label in the UI 

type virtual-
link-type 

Type of virtual link. Possible values: 

• ELAN: A multipoint service connecting a set of 
VNFs 

• ELINE: For a simple point to point connection 
between a VNF and the existing network. 



 

Page 28 of 51 

 

 

Deliverable D1.3 

 

• ETREE: A multipoint service connecting one or 
more roots and a set of leaves, but preventing 
inter-leaf communication. 

Deviation: init-params 

Extra parameters for VLD instantiation 

Depending on the value of init-params, internal-vld may have additional fields. 

When init-params is 'vim-network-profile' 

The following fields are defined: 

Field Type Description 

ip-profile-ref string Named reference to IP-profile object 

When init-params is 'vim-network-ref' 

The following fields are defined: 

Field Type Description 

vim-network-
name 

string Name of network in VIM account. This is used to indicate pre-
provisioned network name in cloud account. 

vnfd-base:internal-connection-point 

List of internal connection points in this VLD 

The following fields are defined: 

Field Type Description 

id-ref leafref reference to the internal connection point id 
'../../../vdu/internal-connection-point/id' 

ip-address ip-address IP address of the internal connection point 

vnfd-base:license 

Software license applied to the VNF 

The following fields are defined: 

Field Type Description 

notice string Text indicating the license under which the software used by the VNF is 
released. Usually contains a short note and a reference (e.g. URL) to the 
complete document. 
For example, when using the open source license MPLv2, the author may 
consider including: 

This Source Code Form is subject to the 
terms of the Mozilla Public License, v. 2.0. If a 
copy of the MPL was not distributed with 
this file, You can obtain one at 
https://mozilla.org/MPL/2.0/. 



 

Page 29 of 51 

 

 

Deliverable D1.3 

 

short-
id 

string Short identifier related to the license type, as listed in the tl;dr legal 
website. For example: 

• agpl3 

• apache2 

• artistic-2.0 

• bsd3 

• cc0-1.0 

• custom 

• epl 

• freebsd 

• gpl-2.0 

• gpl-3.0 

• isc 

• lgpl-2.1 

• lgpl-3.0 

• mit 

• mpl-2.0 

• opensource 

• proprietary 

• public-domain 

O.B.S.: proprietary, opensource and custom values allow a very flexible 
usage for this field, but should be complemented with an explicative text 
notice. 

vnfd-base:mgmt-interface 

Interface over which the VNF is managed. 

The following fields are defined: 

Field Type Description 

dashboard-params  Parameters for the VNF dashboard 
See: vnfd-base:dashboard-params 

port port-number Port for the management interface. 

vnfd-base:dashboard-params 

Parameters for the VNF dashboard 

The following fields are defined: 

Field Type Description 

https boolean Pick HTTPS instead of HTTP , Default is false 

path string The HTTP path for the dashboard 

port port-number The HTTP port for the dashboard 

Deviation: endpoint-type 

https://tldrlegal.com/


 

Page 30 of 51 

 

 

Deliverable D1.3 

 

Indicates the type of management endpoint. 

Depending on the value of endpoint-type, mgmt-interface may have additional fields. 

When endpoint-type is 'cp' 

Use the ip address associated with this connection point. This cp is then considered as 
management. 

The following fields are defined: 

Field Type Description 

cp leafref '../../connection-point/name' 

When endpoint-type is 'ip' 

Specifies the static IP address for managing the VNF. 

The following fields are defined: 

Field Type Description 

ip-
address 

ip-
address 

The ip-address type represents an IP address and is IP version 
neutral. The format of the textual representations implies the IP 
version. 

When endpoint-type is 'vdu-id' 

Use the default management interface on this VDU. 

The following fields are defined: 

Field Type Description 

vdu-id leafref '../../vdu/id' 

manotypes:monitoring-param 

List of monitoring parameters at the network service level 

The following fields are defined: 

Field Type Description 

description string  

group-tag string A tag to group monitoring parameters 

http-endpoint-
ref 

leafref '../../http-endpoint/path' 

id string  

json-query-
method 

json-query-
method 
default: 
'NAMEKEY' 

The method to extract a value from a JSON response 

• NAMEKEY - Use the name as the key for a non-
nested value. 

• JSONPATH - Use jsonpath-rw implementation 
to extract a value. 

• OBJECTPATH - Use objectpath implementation 
to extract a value. 



 

Page 31 of 51 

 

 

Deliverable D1.3 

 

json-query-
params 

 See: manotypes:json-query-params 

name string Name identifying the monitoring parameter 

numeric-
constraints 

 See: manotypes:numeric-constraints 

text-constraints  See: manotypes:text-constraints 

units string Measured Counter Units (e.g., Packets, Kbps, Mbps, 
etc.) 

value-decimal decimal64 Current value for a decimal parameter 

value-integer int64 Current value for an integer parameter 

value-string string Current value for a string parameter 

value-type param-value-
type 
default: 'INT' 

The type of the parameter value: 

• INT 

• DECIMAL 

• STRING 

widget-type widget-type 
default: 
'COUNTER' 

Defines the UI Display variant of measured 
counters. 

manotypes:json-query-params 

The following fields are defined: 

Field Type Description 

json-path string The jsonpath to use to extract value from JSON structure 

object-path string The objectpath to use to extract value from JSON structure 

vnfd-base:placement-groups 

List of placement groups at VNF level 

The following fields are defined: 

Field Type Description 

member-vdus list[1...N] List of VDUs that are part of this placement group 
See: vnfd-base:member-vdus 

name string Place group construct to define the compute resource 
placement strategy in cloud environment 

requirement string This is free text space used to describe the 
intent/rationale behind this placement group. This is for 
human consumption only 

strategy enumeration 
default: 
'COLOCATION' 

Strategy associated with this placement group Following 
values are possible: 

• COLOCATION: Colocation strategy imply intent to share 
the physical infrastructure (hypervisor/network) 
among all members of this group. 



 

Page 32 of 51 

 

 

Deliverable D1.3 

 

• ISOLATION: Isolation strategy imply intent to not 
share the physical infrastructure 
(hypervisor/network) among the members of this 
group. 

vnfd-base:member-vdus 

List of VDUs that are part of this placement group 

The following fields are defined: 

Field Type Description 

member-vdu-ref leafref '../../../vdu/id' 

vnfd-base:vdu 

List of Virtual Deployment Units 

The following fields are defined: 

Field Type Description 

alarm list[1...N] See: vnfd-base:alarm 

alternative-
images 

list[1...N] List of alternative images per VIM type. Different images 
can be used for specific types of VIMs instead of the 
default image. This allows deployments in sites where the 
image identifier in the VIM is given by the VIM provider 
and cannot be modified. If an alternative image is 
specified for a VIM type, it will prevail over the default 
image 
See: vnfd-base:alternative-images 

count uint64 Number of instances of VDU 

description string Description of the VDU. 

guest-epa  See: manotypes:guest-epa 

host-epa  Specifies the host level EPA attributes. 
See: manotypes:host-epa 

hypervisor-epa  See: manotypes:hypervisor-epa 

id string Unique id for the VDU 

image string Image name for the software image. If the image name is 
found within the VNF package it will be uploaded to all 
VIM accounts during onboarding process. Otherwise, the 
image must be added to the VIM account with the same 
name as entered here. 

image-checksum string Image md5sum for the software image. The md5sum, if 
provided, along with the image name uniquely identifies 
an image uploaded to the CAL. 

interface list[1...N] List of Interfaces (external and internal) for the VNF 
See: vnfd-base:interface 



 

Page 33 of 51 

 

 

Deliverable D1.3 

 

internal-
connection-
point 

list[1...N] List for internal connection points. Each VNFC has zero or 
more internal connection points. Internal connection 
points are used for connecting the VNF with components 
internal to the VNF. If a VNF has only one VNFC, it may 
not have any internal connection points. 
See: vnfd-base:internal-connection-point 

mgmt-vpci string Specifies the virtual PCI address. 
Expressed in the following format dddd:dd:dd.d. For 
example: 0000:00:12.0. 
This information can be used to pass as metadata during 
the VM creation. 

name string Unique name for the VDU 

supplemental-
boot-data 

 See: manotypes:supplemental-boot-data 

vdu-
configuration 

 See: vnfd-base:vdu-configuration 

vm-flavor  See: manotypes:vm-flavor 

volumes list[1...N] See: vnfd-base:volumes 

vswitch-epa  See: manotypes:vswitch-epa 

vnfd-base:alarm 

The following fields are defined: 

Field Type Description 

actions  See: manotypes:actions 

alarm-id string This field is reserved for the identifier assigned by the VIM 
provider 

description string A description of this alarm 

enabled boolean 
default: 
'true' 

This flag indicates whether the alarm has been enabled or 
disabled. 

evaluations uint32 Defines the length of time (seconds) in which metric data 
are collected in order to evaluate the chosen statistic. 

metric alarm-
metric-type 

The metric to be tracked by this alarm. Possible values: 

• CPU_UTILIZATION 

• MEMORY_UTILIZATION 

• STORAGE_UTILIZATION 

name string A human readable string to identify the alarm 

operation alarm-
operation-
type 

The relational operator used to define whether an alarm 
should be triggered in certain scenarios, such as if the 
metric statistic goes above or below a specified value. 
Possible values: 

• GE: greater than or equal 



 

Page 34 of 51 

 

 

Deliverable D1.3 

 

• LE: less than or equal 

• GT: greater than 

• LT: less than 

• EQ: equal 

period uint32 The period defines the length of time (seconds) that the 
metric data are collected over in order to evaluate the 
chosen statistic. 

repeat boolean 
default: 
'true' 

This flag indicates whether the alarm should be repeatedly 
emitted while the associated threshold has been crossed. 

severity alarm-
severity-
type 

A measure of the importance or urgency of the alarm 

statistic alarm-
statistic-
type 

The type of metric statistic that is tracked by this alarm. 
Possible values: 

• AVERAGE 

• MINIMUM 

• MAXIMUM 

• COUNT 

• SUM 

value decimal64 This value defines the threshold that, if crossed, will trigger 
the alarm. 

vdur-id string The identifier of the VDUR that the alarm is associated with 

manotypes:actions 

The following fields are defined: 

Field Type Description 

alarm list[1...N] See: manotypes:alarm 

insufficient-data list[1...N] See: manotypes:insufficient-data 

ok list[1...N] See: manotypes:ok 

manotypes:alarm 

The following fields are defined: 

Field Type Description 

url string URL that should trigger the action 

manotypes:insufficient-data 

The following fields are defined: 

Field Type Description 

url string URL that should trigger the action 



 

Page 35 of 51 

 

 

Deliverable D1.3 

 

manotypes:ok 

The following fields are defined: 

Field Type Description 

url string URL that should trigger the action 

vnfd-base:alternative-images 

List of alternative images per VIM type. Different images can be used for specific types of VIMs 
instead of the default image. This allows deployments in sites where the image identifier in the 
VIM is given by the VIM provider and cannot be modified. If an alternative image is specified 
for a VIM type, it will prevail over the default image 

The following fields are defined: 

Field Type Description 

image string Image name for the software image. If the image name is found 
within the VNF package it will be uploaded to all VIM accounts during 
onboarding process. Otherwise, the image must be added to the VIM 
account with the same name as entered here. 

image-
checksum 

string Image md5sum for the software image. The md5sum, if provided, 
along with the image name uniquely identifies an image uploaded to 
the CAL. 

vim-type string VIM type: openvim, openstack, vmware, aws, etc. 

Deviation: cloud-init-input 

Indicates how the contents of cloud-init script are provided. There are 2 choices - inline or in a 
file 

Depending on the value of cloud-init-input, vdu may have additional fields. 

When cloud-init-input is 'filename' 

The following fields are defined: 

Field Type Description 

cloud-init-
file 

string Name of file with contents of cloud-init script in cloud-config 
format 

When cloud-init-input is 'inline' 

The following fields are defined: 

Field Type Description 

cloud-init string Contents of cloud-init script, provided inline, in cloud-config format 

manotypes:guest-epa 

The following fields are defined: 

Field Type Description 



 

Page 36 of 51 

 

 

Deliverable D1.3 

 

cpu-pinning-
policy 

enumeration 
default: 
'ANY' 

CPU pinning policy describes association between virtual 
CPUs in guest and the physical CPUs in the host. 

• DEDICATED : Virtual CPUs are pinned to physical 
CPUs 

• SHARED : Multiple VMs may share the same physical 
CPUs. 

• ANY : Any policy is acceptable for the VM 

cpu-thread-
pinning-
policy 

enumeration CPU thread pinning policy describes how to place the guest 
CPUs when the host supports hyper threads: 

• AVOID : Avoids placing a guest on a host with threads. 

• SEPARATE: Places vCPUs on separate cores, and 
avoids placing two vCPUs on two threads of same 
core. 

• ISOLATE : Places each vCPU on a different core, and 
places no vCPUs from a different guest on the same 
core. 

• PREFER : Attempts to place vCPUs on threads of the 
same core. 

mempage-size enumeration Memory page allocation size. If a VM requires hugepages, it 
should choose LARGE or SIZE_2MB or SIZE_1GB. If the VM 
prefers hugepages it should choose PREFER_LARGE. 

• LARGE : Require hugepages (either 2MB or 1GB) 

• SMALL : Doesn’t require hugepages 

• SIZE_2MB : Requires 2MB hugepages 

• SIZE_1GB : Requires 1GB hugepages 

• PREFER_LARGE : Application prefers hugepages 

pcie-device list[1...N] List of pcie passthrough devices. 
See: manotypes:pcie-device 

trusted-
execution 

boolean This VM should be allocated from trusted pool 

Deviation: numa-policy 

Depending on the value of numa-policy, guest-epa may have additional fields. 

When numa-policy is 'numa-aware' 

The following fields are defined: 

Field Type Description 

numa-
node-
policy 

 This policy defines NUMA topology of the guest. Specifically identifies if 
the guest should be run on a host with one NUMA node or multiple 
NUMA nodes. As an example a guest might need 8 VCPUs and 4 GB of 
memory. However, it might need the VCPUs and memory distributed 
across multiple NUMA nodes. In this scenario, NUMA node 1 could run 
with 6 VCPUs and 3GB, and NUMA node 2 could run with 2 VCPUs and 
1GB. 



 

Page 37 of 51 

 

 

Deliverable D1.3 

 

See: manotypes:numa-node-policy 

manotypes:numa-node-policy 

This policy defines NUMA topology of the guest. Specifically identifies if the guest should be run 
on a host with one NUMA node or multiple NUMA nodes. As an example a guest might need 8 
VCPUs and 4 GB of memory. However, it might need the VCPUs and memory distributed across 
multiple NUMA nodes. In this scenario, NUMA node 1 could run with 6 VCPUs and 3GB, and 
NUMA node 2 could run with 2 VCPUs and 1GB. 

The following fields are defined: 

Field Type Description 

mem-
policy 

enumeration This policy specifies how the memory should be allocated in a 
multi-node scenario. 

• STRICT : The memory must be allocated strictly from the 
memory attached to the NUMA node. 

• PREFERRED : The memory should be allocated 
preferentially from the memory attached to the NUMA node 

node list[1...N] See: manotypes:node 

node-cnt uint16 The number of NUMA nodes to expose to the VM. 

manotypes:node 

The following fields are defined: 

Field Type Description 

id uint64 NUMA node identification. Typically it’s 0 or 1 

memory-mb uint64 Memory size expressed in MB for this NUMA node. 

vcpu list[1...N] List of VCPUs to allocate on this NUMA node. 
See: manotypes:vcpu 

Deviation: om-numa-type 

OpenMANO NUMA type selection 

Depending on the value of om-numa-type, node may have additional fields. 

When om-numa-type is 'cores' 

The following fields are defined: 

Field Type Description 

num-cores uint8 Number of cores 

When om-numa-type is 'paired-threads' 

The following fields are defined: 

Field Type Description 

paired-threads  See: manotypes:paired-threads 



 

Page 38 of 51 

 

 

Deliverable D1.3 

 

When om-numa-type is 'threads' 

The following fields are defined: 

Field Type Description 

num-threads uint8  

manotypes:vcpu 

List of VCPUs to allocate on this NUMA node. 

The following fields are defined: 

Field Type Description 

id uint64 List of VCPUs ids to allocate on this NUMA node 

When numa-policy is 'numa-unaware' 

The following fields are defined: 

Field Type Description 

numa-unaware empty No policy is defined 

manotypes:pcie-device 

List of pcie passthrough devices. 

The following fields are defined: 

Field Type Description 

count uint64 Number of devices to attach to the VM. 

device-id string Device identifier. 

manotypes:host-epa 

Specifies the host level EPA attributes. 

The following fields are defined: 

Field Type Description 

cpu-arch enumeration Host CPU architecture. Possible values: 

• PREFER_X86 

• REQUIRE_X86 

• PREFER_X86_64 

• REQUIRE_X86_64 

• PREFER_I686 

• REQUIRE_I686 

• PREFER_IA64 

• REQUIRE_IA64 

• PREFER_ARMV7 

• REQUIRE_ARMV7 

• PREFER_ARMV8 



 

Page 39 of 51 

 

 

Deliverable D1.3 

 

• REQUIRE_ARMV8 

cpu-core-count uint64 Number of cores on the host. 

cpu-core-thread-count uint64 Number of threads per cores on the host. 

cpu-feature list[1...N] List of CPU features. 
See: manotypes:cpu-feature 

cpu-model enumeration Host CPU model. Possible values: 

• PREFER_WESTMERE 

• REQUIRE_WESTMERE 

• PREFER_SANDYBRIDGE 

• REQUIRE_SANDYBRIDGE 

• PREFER_IVYBRIDGE 

• REQUIRE_IVYBRIDGE 

• PREFER_HASWELL 

• REQUIRE_HASWELL 

• PREFER_BROADWELL 

• REQUIRE_BROADWELL 

• PREFER_NEHALEM 

• REQUIRE_NEHALEM 

• PREFER_PENRYN 

• REQUIRE_PENRYN 

• PREFER_CONROE 

• REQUIRE_CONROE 

• PREFER_CORE2DUO 

• REQUIRE_CORE2DUO 

cpu-socket-count uint64 Number of sockets on the host. 

cpu-vendor enumeration Host CPU Vendor. Possible values: 

• PREFER_INTEL 

• REQUIRE_INTEL 

• PREFER_AMD 

• REQUIRE_AMD 

om-cpu-feature list[1...N] List of OpenMANO CPU features 
See: manotypes:om-cpu-feature 

om-cpu-model-string string OpenMANO CPU model string 

manotypes:cpu-feature 

List of CPU features. 

The following fields are defined: 

Field Type Description 

feature cpu-
feature-
type 

CPU feature. Possible values: {REQUIRE|PREFER}_{X}, where X is: 
• AES: CPU supports advanced instruction set for AES (Advanced 

Encryption Standard). 



 

Page 40 of 51 

 

 

Deliverable D1.3 

 

• CAT: Cache Allocation Technology (CAT) allows an Operating 
System, Hypervisor, or similar system management agent to 
specify the amount of L3 cache (currently the last-level cache in 
most server and client platforms) space an application can fill 
(as a hint to hardware functionality, certain features such as 
power management may override CAT settings). 

• CMT: Cache Monitoring Technology (CMT) allows an Operating 
System, Hypervisor, or similar system management agent to 
determine the usage of cache based on applications running on 
the platform. The implementation is directed at L3 cache 
monitoring (currently the last-level cache in most server and 
client platforms). 

• DDIO: Intel Data Direct I/O (DDIO) enables Ethernet server NICs 
and controllers talk directly to the processor cache without a 
detour via system memory. This enumeration specifies if the 
VM requires a DDIO capable host. 

manotypes:om-cpu-feature 

List of OpenMANO CPU features 

The following fields are defined: 

Field Type Description 

feature string CPU feature 

manotypes:hypervisor-epa 

The following fields are defined: 

Field Type Description 

type enumeration Specifies the type of hypervisor. 

• KVM: KVM 

• XEN: XEN 

version string  

vnfd-base:interface 

List of Interfaces (external and internal) for the VNF 

The following fields are defined: 

Field Type Description 

mac-
address 

string MAC address of the interface. Some VNFs require a specific 
MAC address to be configured in the interface. While this is 
not recommended at all in NFV environments, this parameter 
exists to allow those scenarios. This parameter will be likely 
deprecated in the future. 

name string Name of the interface. Note that this name has only local 
significance to the VDU. 



 

Page 41 of 51 

 

 

Deliverable D1.3 

 

position uint32 Explicit Position of the interface within the list 

type interface-
type 
default: 
'EXTERNAL' 

Type of the Interface (INTERNAL or EXTERNAL) 

virtual-
interface 

 Container for the virtual interface properties. 
See: vnfd-base:virtual-interface 

Deviation: connection-point-type 

Depending on the value of connection-point-type, interface may have additional fields. 

When connection-point-type is 'external' 

The following fields are defined: 

Field Type Description 

external-connection-point-
ref 

leafref Leaf Ref to the particular external connection 
point 
'../../../connection-point/name' 

When connection-point-type is 'internal' 

The following fields are defined: 

Field Type Description 

internal-connection-point-
ref 

leafref Leaf Ref to the particular internal connection 
point 
'../../internal-connection-point/id' 

vnfd-base:virtual-interface 

Container for the virtual interface properties. 

The following fields are defined: 

Field Type Description 

bandwidth uint64 Aggregate bandwidth of the NIC. 

type enumeration 
default: 
'VIRTIO' 

Specifies the type of virtual interface between VM and host. 

• VIRTIO : Use the traditional VIRTIO interface. 

• PCI-PASSTHROUGH : Use PCI-PASSTHROUGH interface. 

• SR-IOV : Use SR-IOV interface. 

• E1000 : Emulate E1000 interface. 

• RTL8139 : Emulate RTL8139 interface. 

• PCNET : Emulate PCNET interface. 

• OM-MGMT : Deprecated! Use VIRTIO instead and set the 
VNF management interface at vnfd:mgmt-interface:cp 

vpci string Specifies the virtual PCI address. Expressed in the following 
format dddd:dd:dd.d. For example 0000:00:12.0. This 
information can be used to pass as metadata during the VM 
creation. 



 

Page 42 of 51 

 

 

Deliverable D1.3 

 

manotypes:supplemental-boot-data 

The following fields are defined: 

Field Type Description 

boot-data-
drive 

boolean 
default: 
'false' 

Some VIMs implement additional drives to host config-
files or meta-data 

config-file list[1...N] List of configuration files to be written on an additional 
drive 
See: manotypes:config-file 

manotypes:config-file 

List of configuration files to be written on an additional drive 

The following fields are defined: 

Field Type Description 

dest string Full path of the destination in the guest 

source string Name of the configuration file 

vnfd-base:vdu-configuration 

The following fields are defined: 

Field Type Description 

config-primitive list[1...N] List of config primitives supported by the 
configuration agent for this VNF or VDU. 
See: manotypes:config-primitive 

initial-config-
primitive 

list[1...N] Initial set of configuration primitives. 
See: manotypes:initial-config-primitive 

Deviation: config-method 

Defines the configuration method for the VNF or VDU. 

Depending on the value of config-method, vdu-configuration may have additional fields. 

When config-method is 'juju' 

Configure the VNF or VDU through Juju. 

The following fields are defined: 

Field Type Description 

juju  See: manotypes:juju 

When config-method is 'script' 

Use custom script for configuring the VNF or VDU. This script is executed in the context of 
Orchestrator (The same system and environment as the Launchpad). 

The following fields are defined: 

Field Type Description 



 

Page 43 of 51 

 

 

Deliverable D1.3 

 

script  See: manotypes:script 

manotypes:config-primitive 

List of config primitives supported by the configuration agent for this VNF or VDU. 

The following fields are defined: 

Field Type Description 

name string Name of the config primitive. 

parameter list[1...N] List of parameters to the config primitive. 
See: manotypes:parameter 

user-defined-
script 

string A user defined script. If user defined script is defined, the 
script will be executed using bash 

manotypes:initial-config-primitive 

Initial set of configuration primitives. 

The following fields are defined: 

Field Type Description 

seq uint64 Sequence number for the configuration primitive. 

Deviation: primitive-type 

Depending on the value of primitive-type, initial-config-primitive may have additional 
fields. 

When primitive-type is 'primitive-definition' 

The following fields are defined: 

Field Type Description 

name string Name of the configuration primitive. 

parameter list[1...N] List of parameters to the configuration primitive. 
See: manotypes:parameter 

user-defined-script string A user defined script. 

manotypes:vm-flavor 

The following fields are defined: 

Field Type Description 

memory-mb uint64 Amount of memory in MB. 

storage-gb uint64 Amount of disk space in GB. 

vcpu-count uint16 Number of VCPUs for the VM. 

vnfd-base:volumes 

The following fields are defined: 

Field Type Description 



 

Page 44 of 51 

 

 

Deliverable D1.3 

 

description string Description for Volume 

device-bus enumeration Type of disk-bus on which this disk is exposed to guest (ide, 
usb, virtio, scsi) 

device-type enumeration The type of device as exposed to guest (disk, cdroom, floppy, 
lun) 

name string Name of the disk-volumes, e.g. vda, vdb etc 

size uint64 Size of disk in GB 

Deviation: volume-source 

Defines the source of the volume. Possible options are: 

1. Ephemeral – Empty disk 

2. Image – Refer to image to be used for volume 

3. Volume – Reference of pre-existing volume to be used 

Depending on the value of volume-source, volumes may have additional fields. 

When volume-source is 'ephemeral' 

The following fields are defined: 

Field Type Description 

ephemeral empty  

When volume-source is 'image' 

The following fields are defined: 

Field Type Description 

image string Image name for the software image. If the image name is found 
within the VNF package it will be uploaded to all VIM accounts during 
onboarding process. Otherwise, the image must be added to the VIM 
account with the same name as entered here. 

image-
checksum 

string Image md5sum for the software image. The md5sum, if provided, 
along with the image name uniquely identifies an image uploaded to 
the CAL. 

manotypes:vswitch-epa 

The following fields are defined: 

Field Type Description 

ovs-acceleration enumeration Specifies Open vSwitch acceleration mode. 

• MANDATORY: OVS acceleration is required 

• PREFERRED: OVS acceleration is preferred 

ovs-offload enumeration Specifies Open vSwitch hardware offload mode. 

• MANDATORY: OVS offload is required 

• PREFERRED: OVS offload is preferred 



 

Page 45 of 51 

 

 

Deliverable D1.3 

 

vnfd-base:vdu-dependency 

List of VDU dependencies. 

The following fields are defined: 

Field Type Description 

vdu-depends-on-
ref 

leafref Reference to the VDU on which the source VDU 
depends. 
'../../vdu/id' 

vdu-source-ref leafref '../../vdu/id' 

vnfd-base:vnf-configuration 

The following fields are defined: 

Field Type Description 

config-primitive list[1...N] List of config primitives supported by the 
configuration agent for this VNF or VDU. 
See: manotypes:config-primitive 

initial-config-
primitive 

list[1...N] Initial set of configuration primitives. 
See: manotypes:initial-config-primitive 

5.3 Module: pnfd 

The following fields are defined: 

Field Type Description 

pnfd-catalog  See: pnfd:pnfd-catalog 

5.3.1 pnfd:pnfd-catalog 

The following fields are defined: 

Field Type Description 

pnfd list[1...N] See: pnfd:pnfd 

pnfd:pnfd 
The following fields are defined: 

Field Type Description 

category string[1...N] List of categories that can be used to 
group PNFs providing similar features, 
e.g. routing, access-point. 

connection-
point 

list[1...N] List for external connection points. Each 
PNF has one or more external connection 
points. 
See: pnfd:connection-point 

description string Description of the PNFD. 

id uuid Identifier for the PNFD. 



 

Page 46 of 51 

 

 

Deliverable D1.3 

 

pattern: ['[0-9a-fA-F]{8}-
[0-9a-fA-F]{4}-[0-9a-fA-
F]{4}-[0-9a-fA-F]{4}-[0-9a-
fA-F]{12}'] 

logical-
type 

string Different network functions can be 
implemented in different ways and by 
different vendors, but perform basically 
equivalent logical operations. 
This field should be used to identify a 
high-level type that abstract the chosen 
implementation, allowing similar PNFs to 
be identified. 
Examples: firewall, ids, sbc, cpe … 

name string PNFD name. 

short-name string Short name to appear as label in the UI 

vendor string Vendor of the PNFD. 

version string Version of the PNFD 

pnfd:connection-point 

List for external connection points. Each PNF has one or more external connection points. 

The following fields are defined: 

Field Type Description 

cp-type connection-point-type Type of the connection point. 

id uint64 Identifier for the external connection points 

5.4 Module: vnffgd 

The following fields are defined: 

Field Type Description 

vnffgd-catalog  See: vnffgd:vnffgd-catalog 

5.4.1 vnffgd:vnffgd-catalog 

The following fields are defined: 

Field Type Description 

vnffgd list[1...N] List of VNF Forwarding Graph Descriptors (VNFFGD). 
See: vnffgd:vnffgd 

vnffgd:vnffgd↓ 
List of VNF Forwarding Graph Descriptors (VNFFGD). 

The following fields are defined: 

Field Type Description 



 

Page 47 of 51 

 

 

Deliverable D1.3 

 

classifier list[1...N] List of classifier rules. 
See: vnffgd:classifier 

description string Description of the 
VNFFGD. 

id uuid 
pattern: ['[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-
F]{12}'] 

Identifier for the 
VNFFGD. 

name string VNF Forwarding Graph 
Descriptor name. 

rsp list[1...N] List of Rendered Service 
Paths (RSP). 
See: vnffgd:rsp 

short-name string Short name to appear as 
label in the UI 

vendor string Provider of the VNFFGD. 

version string Version of the VNFFGD 

vnffgd:classifier 

List of classifier rules. 

The following fields are defined: 

Field Type Description 

Id string Identifier for the classifier rule. 

match-attributes list[1...N] List of match attributes. 
See: vnffgd:match-attributes 

Name string Name of the classifier. 

rsp-id-ref leafref A reference to the RSP. 
'../../rsp/id' 

vnfd-connection-
point-name-ref 

leafref A reference to a connection point name in a vnfd. 
'/vnfd:vnfd-catalog/vnfd:vnfd[vnfd:id = 
current()/../vnfd-id-ref]/vnfd:connection-
point/vnfd:name' 

vnfd-id-ref leafref A reference to a vnfd. 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

vnffgd:match-attributes 

List of match attributes. 

The following fields are defined: 

Field Type Description 

destination-ip-address ip-address Destination IP address. 

destination-port port-number Destination port number. 

Id string Identifier for the classifier match attribute rule. 



 

Page 48 of 51 

 

 

Deliverable D1.3 

 

ip-proto uint8 IP Protocol. 

source-ip-address ip-address Source IP address. 

source-port port-number Source port number. 

vnffgd:rsp 

List of Rendered Service Paths (RSP). 

The following fields are defined: 

Field Type Description 

Id string Identifier for the RSP. 

Name string RSP name. 

vnfd-connection-point-ref list[1...N] A list of references to connection points. 
See: vnffgd:vnfd-connection-point-ref 

vnffgd:vnfd-connection-point-ref 

A list of references to connection points. 

The following fields are defined: 

Field Type Description 

Order uint8 A number that denotes the order of a VNF in a chain 

vnfd-connection-
point-name-ref 

leafref A reference to a connection point name in a vnfd. 
'/vnfd:vnfd-catalog/vnfd:vnfd[vnfd:id = 
current()/../vnfd-id-ref]/vnfd:connection-
point/vnfd:name' 

vnfd-id-ref leafref A reference to a vnfd. 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

5.5 Module: vld 

The following fields are defined: 

Field Type Description 

vld-catalog  See: vld:vld-catalog 

5.5.1 vld:vld-catalog 

The following fields are defined: 

Field Type Description 

vld list[1...N] See: vld:vld 

vld:vld 
The following fields are defined: 

Field Type Description 

description string Description of the VLD. 



 

Page 49 of 51 

 

 

Deliverable D1.3 

 

id uuid 
pattern: ['[0-9a-fA-F]{8}-[0-9a-fA-
F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-
F]{4}-[0-9a-fA-F]{12}'] 

Identifier for the VLD. 

leaf-bandwidth uint64 For ELAN this is the 
bandwidth of branches. 

name string Virtual Link Descriptor 
(VLD) name. 

provider-
network 

 Container for the provider 
network. 
See: manotypes:provider-
network 

root-bandwidth uint64 For ELAN this is the 
aggregate bandwidth. 

short-name string Short name for VLD for UI 

type virtual-link-type  

vendor string Provider of the VLD. 

version string Version of the VLD 

vnfd-
connection-
point-ref 

list[1...N] A list of references to 
connection points. 
See: vld:vnfd-connection-
point-ref 

vld:vnfd-connection-point-ref 

A list of references to connection points. 

The following fields are defined: 

Field Type Description 

member-vnf-index-
ref 

uint64 A reference to the consituent-vnfd id in nsd 

vnfd-connection-
point-ref 

leafref A reference to a connection point name in a vnfd 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:connection-
point/vnfd:name' 

vnfd-ref leafref A reference to a vnfd 
'/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id' 

 
  



 

Page 50 of 51 

 

 

Deliverable D1.3 

 

6 Conclusions 

Following the reference architecture presented in MATILDA D1.1 [3], this deliverable 
presented a set of metamodels that will be used within MATILDA to stablish network 
connectivity for the different parts of the 5G-ready Application Graph and to link computational 
nodes in a multi-side datacentre environment. 

Models derived from the Network Service Descriptor will be used within the MATILDA 
framework in the north bound application programmable interface of the infrastructure 
provider administrative zone, so structured information can be exchanged between MATILDA 
Slice Broker and the telecommunication company OSS/BSS. Models derived from the other 
presented metamodels (VNFDs, PNFDs, VLDs and VNFFGDs) are referenced by the NSDs and 
provide the required information for using network functions (virtualised or not) and creating 
rich network topologies between them, following network requirements that are able to 
capture to business specificities. 

The same metamodels will form the basis for the MATILDA ecosystem and community 
surrounding the Marketplace, by allowing developers to publish pieces of software that respect 
a unified interface and can be easily adopted by telecommunication companies and service 
providers that target different vertical industries. 

Finally, despite of adopting the OSM approach [2], network services created with the 
framework will be reusable outside of MATILDA, since the descriptors can be easily translated 
to other formats, being virtually compatible with most of the existing solutions for VNF 
orchestration, thanks to the increasingly adoption of the ETSI standards they are based on. 

The contents presented here will be complemented by similar documents created in 
MATILDA’s first work package WP1 that describe related metamodels, specially the Slice Intent 
metamodel in D1.4 [5]. Moreover, the outputs of this deliverable will serve as input for the 
implementation work that will be performed in the following work packages, 2, 3 and 4. 

  



 

Page 51 of 51 

 

 

Deliverable D1.3 

 

7 References 

[1] ETSI, ‘GS NFV-MAN 001 - V1.1.1 - Network Functions Virtualisation (NFV); Management 
and Orchestration’, 2014 [Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-
MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf 

[2] OSM, ‘OSM Information Model’, 2017 [Online]. Available: 
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model 

[3] MATILDA, ‘D1.1 - Framework and Reference Architecture’, 2017 [Online]. Available: 
https://private.matilda-5g.eu/documents/PublicDownload/119 

[4] MATILDA, ‘D1.2 - Chainable Application Component and 5G-Ready Application Graph 
Metamodel’, 2017 [Online]. Available: https://matilda-5g.eu/index.php/outcomes 

[5] MATILDA, ‘D1.4 - Slice Intent Metamodel’, 2017 [Online]. Available: https://matilda-
5g.eu/index.php/outcomes 

[6] C. Buerger et al., ‘OSM RELEASE THREE - A Technical Overview’, 2017 [Online]. Available: 
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf 

[7] W3C, ‘Extensible Markup Language (XML) 1.0 (Fifth Edition)’ [Online]. Available: 
https://www.w3.org/TR/xml/. [Accessed: 26-Feb-2018] 

[8] IETF, ‘YANG -A Data Modeling Language for the Network Configuration Protocol 
(NETCONF)’, 2010 [Online]. Available: http://www.rfc-editor.org/info/rfc6020. 

[9] W3C, ‘XML Path Language (XPath)’ [Online]. Available: https://www.w3.org/TR/xpath/. 
[Accessed: 26-Feb-2018] 

[10] OSM, ‘OSM Information Model Repository’. 2017 [Online]. Available: 
https://osm.etsi.org/gitweb/?p=osm/IM.git;a=tree  

[11] MATILDA, ‘Source Code Repository for Metamodels’. 2018 [Online]. Available: 
https://gitlab.com/matilda-project/matilda-metamodels 

http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://private.matilda-5g.eu/documents/PublicDownload/119
https://matilda-5g.eu/index.php/outcomes
https://matilda-5g.eu/index.php/outcomes
https://matilda-5g.eu/index.php/outcomes
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-FINAL.pdf
https://www.w3.org/TR/xml/
http://www.rfc-editor.org/info/rfc6020.
https://www.w3.org/TR/xpath/
https://osm.etsi.org/gitweb/?p=osm/IM.git;a=tree%20
https://gitlab.com/matilda-project/matilda-metamodels

	Deliverable D1.3
	VNF/PNF & VNF Forwarding Graph Metamodel
	Disclaimer
	Copyright
	Table of Contents
	1 Executive Summary
	2 Introduction
	3 Network-related Metamodels Overview
	3.1 Network Service Descriptor
	3.2 Virtual Network Function Descriptor
	3.3 Physical Network Function Descriptor
	3.4 Virtual Link Descriptor
	3.5 VNF Forwarding Graph Descriptor

	4 Data Structure and Modelling Language
	5 Metamodels
	5.1 Module: nsd
	5.1.1 nsd:nsd-catalog
	nsd:nsd
	nsd-base:connection-point
	nsd:constituent-vnfd
	nsd-base:initial-service-primitive
	manotypes:parameter

	manotypes:input-parameter-xpath
	manotypes:ip-profiles
	manotypes:ip-profile-params
	manotypes:dhcp-params
	manotypes:dns-server

	nsd-base:key-pair
	nsd-base:license
	nsd:monitoring-param
	manotypes:numeric-constraints
	manotypes:text-constraints
	nsd:vnfd-monitoring-param

	nsd-base:parameter-pool
	nsd-base:range

	nsd:placement-groups
	nsd:member-vnfd

	nsd-base:scaling-group-descriptor
	nsd-base:scaling-config-action
	nsd-base:scaling-policy
	nsd-base:scaling-criteria
	nsd-base:vnfd-member

	nsd:service-primitive
	nsd:parameter
	manotypes:parameter-group
	nsd:vnf-primitive-group
	nsd:primitive

	nsd-base:terminate-service-primitive
	nsd-base:user
	nsd:vld
	Deviation: init-params
	When init-params is 'vim-network-profile'
	When init-params is 'vim-network-ref'
	manotypes:provider-network
	nsd:vnfd-connection-point-ref

	nsd:vnf-dependency
	nsd-base:vnffgd
	nsd-base:classifier
	nsd-base:match-attributes
	nsd-base:rsp
	nsd-base:vnfd-connection-point-ref




	5.2 Module: vnfd
	5.2.1 vnfd:vnfd-catalog
	vnfd:vnfd
	vnfd-base:connection-point
	manotypes:http-endpoint
	manotypes:headers

	vnfd-base:internal-vld
	Deviation: init-params
	When init-params is 'vim-network-profile'
	When init-params is 'vim-network-ref'
	vnfd-base:internal-connection-point

	vnfd-base:license
	vnfd-base:mgmt-interface
	vnfd-base:dashboard-params
	Deviation: endpoint-type
	When endpoint-type is 'cp'
	When endpoint-type is 'ip'
	When endpoint-type is 'vdu-id'

	manotypes:monitoring-param
	manotypes:json-query-params

	vnfd-base:placement-groups
	vnfd-base:member-vdus

	vnfd-base:vdu
	vnfd-base:alarm
	manotypes:actions
	manotypes:alarm
	manotypes:insufficient-data
	manotypes:ok
	vnfd-base:alternative-images
	Deviation: cloud-init-input
	When cloud-init-input is 'filename'
	When cloud-init-input is 'inline'
	manotypes:guest-epa
	Deviation: numa-policy
	When numa-policy is 'numa-aware'
	manotypes:numa-node-policy
	manotypes:node
	Deviation: om-numa-type
	When om-numa-type is 'cores'
	When om-numa-type is 'paired-threads'
	When om-numa-type is 'threads'
	manotypes:vcpu
	When numa-policy is 'numa-unaware'
	manotypes:pcie-device
	manotypes:host-epa
	manotypes:cpu-feature
	manotypes:om-cpu-feature
	manotypes:hypervisor-epa
	vnfd-base:interface
	Deviation: connection-point-type
	When connection-point-type is 'external'
	When connection-point-type is 'internal'
	vnfd-base:virtual-interface
	manotypes:supplemental-boot-data
	manotypes:config-file
	vnfd-base:vdu-configuration
	Deviation: config-method
	When config-method is 'juju'
	When config-method is 'script'
	manotypes:config-primitive
	manotypes:initial-config-primitive
	Deviation: primitive-type
	When primitive-type is 'primitive-definition'
	manotypes:vm-flavor
	vnfd-base:volumes
	Deviation: volume-source
	When volume-source is 'ephemeral'
	When volume-source is 'image'
	manotypes:vswitch-epa

	vnfd-base:vdu-dependency
	vnfd-base:vnf-configuration



	5.3 Module: pnfd
	5.3.1 pnfd:pnfd-catalog
	pnfd:pnfd
	pnfd:connection-point



	5.4 Module: vnffgd
	5.4.1 vnffgd:vnffgd-catalog
	vnffgd:vnffgd↓
	vnffgd:classifier
	vnffgd:match-attributes

	vnffgd:rsp
	vnffgd:vnfd-connection-point-ref




	5.5 Module: vld
	5.5.1 vld:vld-catalog
	vld:vld
	vld:vnfd-connection-point-ref




	6 Conclusions
	7 References

