
Page 1 of 52

A Holistic, Innovative Framework for the Design,
Development and Orchestration of 5G-ready

Applications and Network Services over Sliced
Programmable Infrastructure

DELIVERABLE D1.2

CHAINABLE APPLICATION COMPONENT &
5G-READY APPLICATION GRAPH METAMODEL

Due Date of Delivery: M9 Mx (28/02/2018 dd/mm/yyyy)

Actual Date of Delivery: 05/03/2018 dd/mm/yyyy

Workpackage:
WP1 – MATILDA Reference Architecture,
Conceptualization and Use Cases

Type of the Deliverable: OTHER

Dissemination level: PU

Editors: UPRC, UBITECH

Version: 1.0

Co-funded by
the Horizon 2020
Framework Programme
of the European Union

Call:

H2020-ICT-2016-2

Type of Action:

IA

Project Acronym:

MATILDA

Project ID:

761898

Duration:

30 months

Start Date:

01/06/2017

Project Coordinator:

Name:
Franco Davoli

Phone:
+39 010 353 2732

Fax:
+39 010 353 2154

e-mail:
franco.davoli@cnit.it

Technical Coordinator

Name:
Panagiotis Gouvas

Phone:
+30 216 5000 503

Fax:
+30 216 5000 599

e-mail:
pgouvas@ubitech.eu

Page 2 of 52

Deliverable 1.2

List of Authors

ATOS ATOS Spain SA

Aurora Ramos, Javier Melian

UBITECH GIOUMPITEK Meleti Schediasmos Ylopoiisi kai Polisi Ergon Pliroforikis EPE

Panagiotis Gouvas , Anastasios Zafeiropoulos

UNIVBRIS UNIVERSITY OF BRISTOL
Anderson Bravalheri, Dimitrios Gkounis, Reza Nejabati, Dimitra Simeonidou

UPRC UNIVERSITY OF PIRAEUS RESEARCH CENTER
Dimosthenis Kyriazis, Chrysostomos Symvoulidis, Ilias Tsoumas

INC Incelligent

Panagiotis Demestichas, Kostas Tsagkaris, Nikos Stasinopoulos, Athina Ropodi, Stavroula
Vassaki, Aristotelis Margaris, Dimitris Cardaris, Marinos Galiatsatos

Page 3 of 52

Deliverable 1.2

Disclaimer

The information, documentation and figures available in this deliverable are written by the
MATILDA Consortium partners under EC co-financing (project H2020-ICT-761898) and do not
necessarily reflect the view of the European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is given
that the information is fit for any particular purpose. The reader uses the information at his/her
sole risk and liability.

Copyright

Copyright © 2018 the MATILDA Consortium. All rights reserved.

The MATILDA Consortium consists of:

CONSORZIO NAZIONALE INTERUNIVERSITARIO PER LE TELECOMUNICAZIONI

ATOS SPAIN SA (ATOS)

ERICSSON TELECOMUNICAZIONI (ERICSSON)

INTRASOFT INTERNATIONAL SA (INTRA)

COSMOTE KINITES TILEPIKOINONIES AE (COSM)

ORANGE ROMANIA SA (ORO)

EXXPERTSYSTEMS GMBH (EXXPERT)

GIOUMPITEK MELETI SCHEDIASMOS YLOPOIISI KAI POLISI ERGON PLIROFORIKIS
ETAIREIA PERIORISMENIS EFTHYNIS (UBITECH)

INTERNET INSTITUTE, COMMUNICATIONS SOLUTIONS AND CONSULTING LTD (ININ)

INCELLIGENT IDIOTIKI KEFALAIOUCHIKI ETAIREIA (INC)

SUITE5 DATA INTELLIGENCE SOLUTIONS LIMITED (SUIT5)

NATIONAL CENTER FOR SCIENTIFIC RESEARCH “DEMOKRITOS” (NCSRD)

UNIVERSITY OF BRISTOL (UNIVBRIS)

AALTO-KORKEAKOULUSAATIO (AALTO)

UNIVERSITY OF PIRAEUS RESEARCH CENTER (UPRC)

ITALTEL SPA (ITL)

BIBA - BREMER INSTITUT FUER PRODUKTION UND LOGISTIK GMBH (BIBA).

This document may not be copied, reproduced or modified in whole or in part for any purpose
without written permission from the MATILDA Consortium. In addition to such written
permission to copy, reproduce or modify this document in whole or part, an acknowledgement of
the authors of the document and all applicable portions of the copyright notice must be clearly
referenced.

Page 4 of 52

Deliverable 1.2

Table of Contents

DISCLAIMER .. 3

COPYRIGHT ... 3

TABLE OF CONTENTS ... 4

1 EXECUTIVE SUMMARY .. 5

2 INTRODUCTION .. 6

2.1 SCOPE OF THE DELIVERABLE ... 6

2.2 STRUCTURE OF THE DOCUMENT ... 6

3 BASELINE TECHNOLOGIES .. 7

3.1 EXISTING SOLUTIONS ... 7

3.2 MODELLING LANGUAGES ... 9

3.3 SERVICE MESH .. 10

4 OVERVIEW OF THE METAMODEL .. 12

4.1 APPLICATION COMPONENT PART ... 14

4.2 APPLICATION GRAPH / SERVICE MESH PART ... 19

5 SUPPORT MECHANISMS SUITE ... 21

5.1 OVERALL ARCHITECTURE .. 21

5.2 SUPPORTING MECHANISMS ... 21

6 CONCLUSIONS ... 24

REFERENCES .. 25

APPENDIX 1: CHAINABLE COMPONENT & 5G-READY APPLICATION GRAPH METAMODEL
(V1.0) DOCUMENTATION .. 26

Page 5 of 52

Deliverable 1.2

1 Executive Summary

The scope of MATILDA is to deliver a Holistic, Innovative Framework for Design,
Development and Orchestration of 5G-ready Applications and Network Services over Sliced
Programmable Infrastructure. A 5G-ready Application consists of chainable components (i.e.
micro-services). The interaction between the components can be depicted by a directed
acyclic graph which refers to a 5G-ready application graph and will be implemented by
exploiting the Service Mesh paradigm. In this document we present the conceptualization and
description of these two fundamental entities through the corresponding models: the
chainable component and the 5G-ready application graph. The key outcome is the metamodel
of the two aforementioned entities which has been completed and released as planned.

The chainable application component part of the metamodel describes and verifies (with
the aid of some support mechanisms which are being developed) the following: (i) the
required information for the proper deployment and execution of the components (e.g.
resource requirements), and (ii) the alignment with a set of rules in terms of QoS
requirements, elasticity, cloud-nativeness, etc. The application graph (service mesh) part of
the metamodel is the collection of the bindings among the exposed and required interfaces
per chainable component. Both at component and at graph level, the denotation of a set of
computing, memory, storage and of course network requirements are being supported in
correlation with the corresponding slice intent metamodel.

Moreover, it should be noted that the development of the MATILDA metamodels is a
continuous and iterative process. To this end, this deliverable provides the first version of the
chainable component and the 5G-ready application graph metamodel. The documented and
developed metamodel will evolve and will be extended based on the feedback of the early
prototypes of the project. Regarding the implementation of the metamodel, the XML schema
notation has been used. The updated version of the metamodels will be made available
through the MATILDA web site (http://www.matilda-5g.eu). For the sake of completeness,
the documentation of the existing normative format is provided in Appendix 1.

Page 6 of 52

Deliverable 1.2

2 Introduction

In the MATILDA context the 5G-ready application is the highest-level entity from a top-
down perspective. This is the end-point of 5G environments with which the users will
interact. A 5G-ready application is reflected in an application graph and is implemented by a
service mesh, which consists of several chainable components, the most granular entity of it.
This metamodel describes, conceptualizes, verifies and annotates with requirements and
performance estimations each component of the application and the overall application graph
in order to provide the required information towards the management and orchestration
mechanisms of 5G platforms.

2.1 Scope of the Deliverable

The aim of this deliverable is to develop and describe the chainable component and the 5G-
ready application graph metamodel. This metamodel is an inseparable node in the MATILDA’s
metamodel chain. It is “placed” in the highest layer of the metamodel stack which come to
“trigger” the fulfilment of the slice intent metamodel after the initiation of the former.
Subsequently a slice intent instance-model provides the information to the telco providers
regarding the compute and network materialization of the slice and consequently the
realization of 5G-ready application. The key aspects documented in this deliverable are the
following: (i) the research on the existing modelling solutions and tools, (ii) the identification
of a proper solution to address the needs of a 5G application, (iii) the definition of the
chainable component and the 5G-ready application graph metamodel, (iv) the design and
specification of a set of supporting mechanisms for the efficient verification of metamodel.

2.2 Structure of the Document

Taking under consideration the scope of the current deliverable, this report has been
structured as follows: Chapter 3 provides a brief view of various existing solutions regarding
modelling of micro-services and service graph at industry and academic levels. In parallel, a
comparison of key modelling languages and tools (serialization, deserialization, etc.) is
presented, which concludes to the specific technologies that will be used. To this end, the final
section of this chapter is devoted to the presentation of the service mesh approach, which has
been adopted for the interconnection of the components and the compilation of the
application graphs.

Chapter 4 focuses on the analysis of the MATILDA chainable component and the 5G-ready
application graph metamodel. This chapter is divided in two sub-sections. The first sub-
section describes the most granular executable unit of a 5G-ready application: the component.
Several components can be combined towards the realization of a Service Mesh. The second
sub-section presents the metamodel of the application graph (as a service mesh) and a part of
slice intent metamodel, which is related directly with the application graph.

Chapter 5 provides an overview of the Supporting Mechanisms Suite, which has been
designed for the efficient verification of the aforementioned metamodel. Specifically, in this
chapter the overall architecture of the suite and a short design specification of each
mechanism are presented.

Page 7 of 52

Deliverable 1.2

For the sake of completeness, Chapter 6 summarizes the results and the innovations of this
deliverable and the concrete extensions that will be provided in the frame of the next
scheduled releases. The actual formal normative model is provided in Appendix 1.

3 Baseline Technologies

3.1 Existing Solutions

The scope of this sub-section is to provide a generic view of some of the current trends
regarding each component/service and the entire applications/services graph modelling
schemas that are going to be considered towards the definition of the MATILDA metamodels.

 NodeRED

It is a project of the JS Foundation. NodeRED [nodeRED] is a tool for wiring together
hardware devices, APIs and online services. It tackles the problem of multi-connections in IoT.
It provides a browser-based editor that makes it easy to connect together flows using the
wide range of nodes in the palette that can be deployed to its runtime in a single-click. The
flows created in Node-RED are stored using JSON, which can be easily shared with others. A
built-in library allows one to save useful nodes and flows for reuse and an online flow library
allows to share one’s work with others. Focusing mostly on modelling aspects of NodeRED, it
follows a very simple and light node and flow model schema. Especially, the service-model is
addressed as “node” and it is described by two sets of properties:

o core-properties: used by the runtime/editor for the basic node functionality;

Figure 1: NodeRED core properties

o type-properties: created by node-developer, where each node type can contain
properties that are specific to it. In addition, a custom node could declare its own

Page 8 of 52

Deliverable 1.2

property to capture that information, and its runtime implementation knows what
to do with it.

Figure 2: NodeRED type properties

To sum up, the application-graph model is addressed as “flow”, and it is represented by a
Javascript array of objects. Each object is a node, with a set of core properties, and a set of
type-specific properties. Furthermore, NodeRED checks the proper deployment of the flow,
but it does not actually deal with nodes’ orchestration, deployment, scaling, and management.
Finally, it does not allow for the specification of (network) parameters regarding links
between different components.

 Juju

Juju [Juju], developed by Canonical, is a framework that can be used to model, manage and
scale services in the cloud. It contains some interaction tools such as a command line and a
graphical user interface and is a solid solution that can reduce the workload for deployment
and configuration. Thus, through these tools a DevOps user can easily embed a service or a
web of services on top of multiple IaaS providers (e.g. OpenStack).

The service metamodel of Juju is addressed as “charm” and contains a set of elements that
are required in order, for a specific service to be composable and orchestratable. The service
graph metamodel is addressed as “bundle” and it is a web of charms. Anybody can deploy a
predefined charm or a bundle and use them. Both of them are described by some YAML files,
and someone can moderate them with some commands called “hooks”. In JUJU
documentation, a strict list of commands per charm is provided, so that anybody can use them
to configure it. However, the Juju platform was not built to address more specific network
quality of service requirements and constraints.

 DOCKER Compose

Developed by Docker, Docker Compose [Docker Compose] is a tool for defining and running
complex, multi-container applications with Docker. With Compose, a multi-container
application can be defined in a file and the application is deployed and executed. A Dockerfile
describes units (each docker-container is considered a granular unit), in which the possible
user (i.e., Devops) could define what the container needs.

 PUPPET

It is categorized in the middleware level and aims to model, install and deploy
infrastructure’s applications and services [Puppet]. It also tracks down the dependencies
between them. Puppet uses a Domain Specific Language (DSL) for the modelling. This specific
language adds more complexity in Puppet, but on the other hand it becomes more consistent
and offers a deeper layer of valid configurability on the spot.

 ARCADIA Context Model

This model is an outcome of the ARCADIA [ARCADIA-D.2.2] EU-funded research project. It
deals with the modelling of services regarding highly distributed applications. With a focus on
component and service-graph models, the ARCADIA Component Model represents the most

Page 9 of 52

Deliverable 1.2

granular executable unit of an ARCADIA application. A set of interconnected components
produces a service graph. Highly Distributed Applications (HDAs) are practically
instantiations of a complex service graph. Each component is described through several
properties and all this information is encapsulated in a XML file that is generated by a specific
XML Schema Definition (XSD).

As already described, many ARCADIA Component Models can be combined in order to
create one ARCADIA Service Graph Model, which is practically a directed graph. Finally, the
service graph model encapsulates the description of each component, as well as a description
for each virtual link, accompanied with information regarding monitoring metrics that refer to
the whole service graph.

3.2 Modelling Languages

YAML

YAML (YAML Ain’t Markup Language) is a human-readable language used for data
serialization. It is mainly used for file configuration, but it can also be used in various
applications where data is being either stored or transmitted. It uses a more minimal syntax
than XML making it easier for a human to read. YAML is considered to be a superset of JSON
[YAML] since it uses both Python-style indentation to indicate nesting, but also uses lists and
maps. YAML has built-in variables (scalars) such as integers, floats, strings, arrays and lists,
but custom data types are also allowed. YAML does not have attributes like the ones found in
XML, but it does support extensible type declarations (including class types for objects).

XML

XML (Extensible Markup Language) is a markup language [XML] mainly used for the
definition of rules for encoding documents in a format that is human-readable. It is broadly
used in a Services Oriented Architecture (SOA) for the communication between various
systems by the exchange of XML messages. The standardization of these messages is done
through XSD (XML Schema). XSD’s is a powerful schema, whose format is similar to XML,
allowing the user to create constraints in a more detailed way on the structure of an XML
document with the support of its rich data typing system.

JSON

JSON (JavaScript Object Notation) is a file format used mainly for the asynchronous
communication between a browser a and the server, replacing XML in some systems [JSON].
JSON uses attribute-value pairs to demonstrate the data as well as array data types. JSON
Schema is used to define the structure of JSON data, to validate the data as well as for
documentation purposes in a format that is similar to a JSON file. The JSON Schema is based
on XML Schema (XSD) but is JSON based.

AVRO

Avro [AVRO] is a data serialization framework developed by Apache. Avro provides rich
data structures and a compact, fast, binary data format supporting Remote Procedure Call
(RPC). Since it is developed within Hadoop a container file to store persistent data can be used
too. The integration with dynamic languages is quite simple, since code generation is not
required to read or write data files nor to use or implement RPC protocols. Code generation as

Page 10 of 52

Deliverable 1.2

an optional optimization, are only worth implementing for statically typed languages. Avro
has built-in schema capabilities for the description of the documents, which is in JSON format
supporting both primitive types (int, float, string, boolean, etc.) and complex types (arrays,
map, records, etc.) as well.

Protocol Buffers

Protocol Buffers is Google’s language-neutral extensible mechanism for serializing
structured data [ProtoBuf]. It is primarily used for the communication between programs
over a wire or for storing data. Protocol Buffers was designed to be a more minimal as well as
faster than XML. The structure of a proto message consists of unique numbered fields, where
each field has a name and a type. The types supported by Protocol Buffers are integers, floats,
strings, Booleans, bytes or other proto files allowing a file to be hierarchal structured. These
messages are then compiled, generating data access class for the programming language.
These data access classes provide simple accessors for each field of the message
(getters/setters, etc.). It does lack however a way to specify a schema within a proto file.
Officially it does support an ASCII serialization format, but that way the forward- and
backward-compatibility making it a bad choice for applications other than debugging.

XML (XSD) has been selected for the modelling part (to enable validations through XSD) and
ProtoBuf for the internal communication between the service components. The purpose of
selecting XSD for the metamodel of component and application graph is that it combines the
ability to express constraints (multiplicity, optional, enumerations) with the ability to export
some human-readable documentation of the metamodel. The metamodels should follow a
"user-optimized" serialization format which is less GUI-dependent. Thus, the usage of
Protocol Buffers which is aiming at the creation of dev-language agnostic message passing
among the developed components.

3.3 Service Mesh

One of the biggest challenges in the 5G evolution lies in the way we properly introduce
services and the Service Oriented Architectures (SOAs) in the 5G environments. MATILDA
overcomes this issue using the new MASA – Mesh Applications and Service Architecture. The
high-level difference of MASA from SOA is summed up on this “The mesh app and service
architecture (MASA) is a multichannel solution architecture that leverages cloud and serverless
computing, containers and microservices as well as APIs and events to deliver modular, flexible
and dynamic solutions. Solutions ultimately support multiple users in multiple roles using
multiple devices and communicating over multiple networks.” [Gartner-2016]

So, in the MATILDA context we implement each 5G-ready application as a Service Mesh to
exploit the 5G cutting edge technologies. More specifically, “a service mesh is a dedicated
infrastructure layer for handling service-to-service communication. It’s responsible for the
reliable delivery of requests through the complex topology of services that comprise a modern,
cloud native application. In practice, the service mesh is typically implemented as an array of
lightweight network proxies that are deployed alongside application code, without the
application needing to be aware.” [Morgan-2017]. This infrastructure layer comes to tackle a
deep issue regarding the real properties of network. Specifically, Peter Deutsch and his team
at Sun describe a list of “fallacies”, a set of the opposite of rules about distributed computing
that people often forget based on the assumptions that they were making for the underlying
network. These fallacies include the assumption that a) the network is reliable, b) latency is

Page 11 of 52

Deliverable 1.2

zero, c) bandwidth is infinite, d) the network is secure, e) topology does not change, f)
there is one administrator, g) transport cost is zero and h) the network is homogeneous.
The removal of these assumptions requires the addition and the satisfaction of many hard
requirements [Calçado -2017].

The Service Mesh concept is implemented in MATILDA by using a sidecar pattern, where
the functionality of each of the components in the mesh is extended by a sidecar proxy. In
general, a sidecar is a service that is coupled to another service (component) that does not
interfere with the functionalities of the main service but extends its properties. A typical
example could be a monitoring information saver, that stores (or even analyses) monitoring
information issued by one or more services. In MATILDA we take advantage of the sidecar
paradigm to attach a proxy to each of the components, taking over the network functionalities
of it regarding interconnection with other components, abstracting the network view to the
component the sidecar is attached to, in order to build a more efficient service mesh.

Figure 3: A component-Proxy communication example

The L7 proxy implements L7VFs (plug in functions that are dynamically loaded by the
intelligent proxy) like load balancing, HTTP filter, HTTP routing, service discovery, etc. that

Page 12 of 52

Deliverable 1.2

operate at the Application level, abstracting the network to the components connected to it,
making the communication among them more efficient and easy as it is depicted in Figure 3.

As in MATILDA D1.1 there have been declared in detail the requirements of 5G-ready
applications coincide with the above-mentioned requirements. Yet, they are much more
intensive, since provisioning of infrastructure should be “instantaneous”, topology is
continuously changing, delay tolerance is minimum, etc. The concept of this dedicated
infrastructure layer is depicted in Figure 4.

Figure 4: The concept of Service Mesh for cloud-native applications.

In conclusion, in the scope of MATILDA, a “5G-enabled application is a distributed
application consisting of cloud-native components that rely on a service mesh infrastructure
as a means of network abstraction. The service mesh per se has to operate on top of a
programmable 5G environment”. Towards these assumptions, the MATILDA architecture
relies on a solid interplay between various logical layers such as the actual data plane, the
service mesh control plane, and the configured virtualized resources that are offered by the
telco provider as a proper slice [MATILDA-D1.1].

4 Overview of the Metamodel

The component metamodel represents the most granular unit of MATILDA 5G framework. A
collection properly selected and interacted components instances forms a DAG (directed
acyclic graph), which equals to the application graph. The place of current metamodel in the
MATILDA metamodel chain is depicted on Figure 5 where the basic architectural parts of the
MATILDA framework and their relationship with the various models is provided.

An application graph placement flow starts with the selection of a vertical application that
has to be deployed and supported by a communication service provider. Therefore, a vertical
application in MATILDA consists of multiple components that can be deployed on top of
programmable infrastructure.

Page 13 of 52

Deliverable 1.2

Figure 5: Usage of MATILDA Metamodels

The Service Repository contains all the instances of the application graphs that have been
registered. The flow initiates by the selection of application graph by an application/service
provider. As depicted in Figure 5, there are two distinct administrative zones. On the left part
resides the administrative zone of the vertical application/service orchestrator while on the
right part the administrative zone of the telco (communication service) provider. Hence, each
administrative zone contains its own orchestration entity with clear responsibilities. The
orchestration entity on the left is responsible to instantiate a vertical application that meets
specific requirements on the virtualized resources that will be provided by the orchestration
mechanism of the right.

Taking under consideration the scope of the two orchestrators, we can easily infer that the
Application/Service Orchestrator and the Telco Orchestration mechanisms follow a
request/response pattern according to which the Service Orchestrator asks for a specific
“setup” that is capable to satisfy some characteristics/requirements and the telco provider
responds with the details of the environment that has to be used for the appropriate setup.
The first request is addressed as Slice Intent while the latter as the offered Slice. Both
specifications are provided in the relevant metamodels, as detailed in D1.4 [MATILDA-D1.4].

Page 14 of 52

Deliverable 1.2

As a third step, the telco provider receives the slice intent and tries to find/create a proper
setup that will satisfy the set of denoted requirements in step 2. The solution that satisfies the
constraints will be announced back to the Service Graph Orchestrator. The solution will be an
instance of the Slice Metamodel. Part of the requirements request during deployment or
runtime may regard the activation or configuration of network services, able to provide the
requested network functionalities. Such services are provided by a NFVO, while the
representation is realised based on the metamodel defined in D1.3 [MATILDA-D1.3]0.

4.1 Application Component Part

MATILDA proposes a separation between the business logic part of a component from the
layer 4-7 network part of it. We implement a service mesh approach with a dedicated proxy
sidecar attached per component. Thus, in this chapter we present the “core” component. For
each component, a proxy sidecar will also be utilized. The sidecar will be exploited by an L7
proxy and communication bus framework, such as Envoy [Envoy]. To this end, the modelling
of the proxy isn’t required.

The MATILDA component metamodel includes a set of fundamental complexType elements
(except from the “ComponentIdentifier” element) that uniquely describe each component in
the entire Service Mesh. These elements are the following – depicted in the next figure: (i)
Distribution, (ii) ExposedInterface, (iii) Configuration, (iv) Volume, (v)
MinimumExecutionRequirements, (vi) ExposedMetric, (vii) RequiredInterface, and (viii)
Capability.

Page 15 of 52

Deliverable 1.2

Figure 6: MATILDA Component element

The first complex type element “Distribution” encapsulates the information that is required
for fetching an instance of a Component. It contains the information regarding the final
image/container of a component and the URI where the component is located in the MATILDA
repository.

Page 16 of 52

Deliverable 1.2

Figure 7: Distribution element

The second complex type element is critical since it describes the exposed interfaces. It is an
“one-to-many” relation because each component may expose several interfaces. It
encapsulates the descriptive identifier of the interface, which is required in order to infer the
chainability of dependencies during the Service Mesh deployment. Furthermore, it contains
the classification of the exposed interface based on its positioning in the 5G network. It can be
ACCESS or CORE. The ACCESS type refers to the UserEquipment-to-component
communication and the CORE refers to the component-to-component communication.
Moreover, it contains port declaration and an optional choice for the transport layer protocol.

Figure 8: Exposed Interface element

On the other hand, each component requires some inputs. Thus, the required interface
section of the component encapsulates via a “one-to-many” relation the information regarding
the graph link, which links the current component with another component. Specifically, it
encapsulates the identifier of the component that satisfies the current component input needs
and the corresponding exposed interface identifier. Of course, there is also a descriptive
identifier of this logical link (“GraphLink”) between two components.

Page 17 of 52

Deliverable 1.2

Figure 9: Required Interface element

The next element is the “Configuration”. Configuration represents a set of environmental
variables that should be provided to the component during instantiation. Practically, it is a
generic collection of key-value pairs to be exploited for deployment and instantiation.

Figure 10: Configuration element

The application component also includes the “Volume” element. It is a capability of the
Hypervisors to provide storage to a VM via volumes. To capture the corresponding cases, the
model includes three “children” for each volume instance. The definition of the type of the
volume since if it has been attached to the guest using one hypervisor type (e.g. Xen) it cannot
be attached to a guest that is using another hypervisor type, for example vSphere, KVM. This is
because the different hypervisors use different disk image formats. Additionally, the volume
element includes sub-elements for the source and the target of each volume.

Figure 11: Volume element

Page 18 of 52

Deliverable 1.2

Furthermore, a crucial aspect of the component relates to its minimum requirements that
have to be met by the hosting environment for the proper execution. This complex element
contains the VCPUs element that refers to the minimum amount of VCPUs that should be
provided by the hypervisor, the minimum RAM and Storage (through the respective
elements) and an element regarding the type of the hypervisor that is preferred (i.e. Esxi,
KVM, Xen).

Figure 12: Minimum execution requirements element

Besides, the application component metamodel includes a section regarding the metrics
that will be reported by the proxy sidecar, the so called “ExposedMetric”. It is a key-value
structure with the metric identifier as key and the unit of it as value.

Figure 13: Exposed Metrics element

Finally, the “Capability” element encapsulates runtime capabilities of the components that
are considered inherent. Such a capability is the scaling of the component.

Page 19 of 52

Deliverable 1.2

Figure 14: Capability element

A detailed analysis of the developed MATILDA chainable component metamodel is provided
in Appendix 1.

4.2 Application Graph / Service Mesh Part

Many chainable components can be combined in order to create a 5G-ready application
graph. As already described, an application graph is practically a directed acyclic graph (DAG)
that is implemented as a Service Mesh.

As depicted in the following figure, given the adoption of the service mesh paradigm, the
form of the application metamodel is simple. It contains a “ServiceMeshIdentifier” for the
unique identification of each 5G-ready application, a “Name” that includes the descriptive
name of each Service Mesh. As expected, a “one-to-many” relation is used to capture the
correlation between the Service Mesh and its components.

Figure 15: Service Mesh element

While this metamodel seems incomplete, it is fully informative. There is no need for the
declaration of graph links and their constraints since: (i) each graph link description is
encapsulated in each component as it has been analyzed in the previous subsection of this

Page 20 of 52

Deliverable 1.2

document. Specifically, each link is considered as an input required interface of the
component which needs it, and (ii) it is a logical link, and each logical link has to be realized as
a network link, with network and compute constraints. These constraints are incorporated in
another metamodel that is exploited by the proposed MATILDA Vertical Orchestrator
[MATILDA-D.1.1]: The Slice Intent metamodel. The figures below depict the relevant part of
the metamodel.

Figure 16: Slice Intent - Resource Contraints element

Figure 17: Slice Intent - Graph link QoS constraints element

Page 21 of 52

Deliverable 1.2

5 Support Mechanisms Suite

5.1 Overall Architecture

The next figure provides a high-level view of the support mechanisms suite and the basic
information flows between components. The main goal of the suite is to verify aspects of the
application graph such as the chainability and configurability of the components, the resource
needs, etc. The architecture and a brief description per component are cited in this section
given that these components exploit information from the proposed 5G-ready application
graph metamodel. However, these mechanisms will be further specified and developed in the
scope of WP2.

Figure 18: Application Graph metamodel management architecture

5.2 Supporting Mechanisms

A key MATILDA concept regarding 5G applications is the chainable application component.
In this context, MATILDA provides a concrete metamodel which covers all characteristics that
should be taken under consideration. There is a set of supporting mechanisms that will be
developed for the proper support of the metamodel and of the environment in which the
metamodel will be deployed and instantiated.

Configurability Checker

The first mechanism regards the evaluation of the configurability of a component. The
purpose of this controller mechanism is to check whether a component exposes its
configuration parameters and if it is capable of changing its configuration at runtime if
necessary. For the first part, the control will be done by collecting the monitoring data and

Page 22 of 52

Deliverable 1.2

checking whether the aforementioned parameters are exposed. For the second part, meaning
the capability of a component to alter its configuration given the circumstances, there are two
ways to check that. The first way is to check the monitoring data to see if any change on the
configuration parameters has been made and inspect the component’s behavior (e.g. if it kept
running of crashed, how it adapted to the changes, etc.). The second way is to develop a test
engine that manually uses a component and changes some configuration parameters during
runtime to check the components behavior. This second method is crucial to be developed,
since we cannot be sure about the configurability of a component based on just the first way
because the configuration might not be changed.

Chainability Evaluator

The second controller regards the evaluation of the chainability of a component in an
application graph. A component can be chainable only if its required interfaces match the
offered interfaces of the component with which it is connected. Taking as example the figure
below, the component C1 is chainable to the component C2, only if the required interfaces of
the component C2 match the offered interfaces of the component C1. That might concern the
data type the C1 offers and the C2 requires. For the component C2 to be chainable must not
only be chainable to the component C1, but also to the components C3 and C4 as described
above, meaning that the required interfaces of both the components C3 and C4 must match
the offered interfaces of the component C2. To perform that kind of control, a mechanism is
going to be developed, which will collect the metadata of each component and check the
required/offered interfaces. Note that a component cannot be always chainable, given that
this relates to the components with which it will be connected within an application graph.

Figure 19: Chainability example

Performance Estimator

The third controller is the Performance Estimator/Profiler. This mechanism actually
consists of several sub-mechanisms aiming at providing estimates regarding the required
resources during runtime based on several facts (e.g. workload, migration decisions, etc).
There are three main types of performance analysis: theoretical, simulation-based and test
based. Within the context of MATILDA, a simulation-based approach will be used since it is a
generic black-box approach (i.e. no need to analyse the source code) that is based on
benchmarks prior to execution. Following the benchmarking outcomes, a training phase will
take place in order to identify the relationships between different parameters (e.g. CPU and

Page 23 of 52

Deliverable 1.2

latency) and how these evolve. As the model will be trained, during runtime the performance
estimator can be utilized to provide estimates based on evolving situations and thus enable
resources adaptation accordingly.

Graph Level Aggregator

The fourth mechanism regards the QoS graph-level aggregator. This mechanism is
responsible for aggregating all the parameters per component in an application graph and
compiling them in overall values for the complete application graph. This mechanism will
gather QoS metrics as well as the performance estimations for each component and identify
the aggregated requirements needed for the whole application graph, in order to facilitate the
execution process. A nice-to-have feature that could be also useful though works the other
way around. A sub-mechanism, called Component-level Divider, that the user of the
application graph composer could use, setting end-to-end requirements for the whole graph
and this mechanism would be responsible for “splitting” the given requirements per
component.

Optimizer

The next mechanism is called Optimizer, more of a facilitating mechanism assisting on the
faster evaluation of a component and as a result the overall graph. The Optimizer will enable
to avoid any unnecessary re-control of a component. There are some controls that cannot be
avoided. For instance, the chainability control cannot be avoided, since it is not entirely up to
the component but has to do with the adjacent components in the application graph it is used.
On the other side, controlling mechanisms like the configurability or the performance
estimator can be avoided since these are totally related to the application component. Thus,
the optimizer will keep historical data per controlling outcome in order to optimize the
overall process.

Recommendation Engine

Another mechanism of the overall suite is the recommendation engine of the MATILDA
application graph composer. It is responsible for proposing recommended components (from
the ones stored in the MATILDA Marketplace) during the application composition process,
thus based on the ones already included in the application graph. The proposed approach
consists of a 2-way recommendation system, where an item-based collaborative filtering
algorithm will be used exploiting the similarity between the components (components that
have been used together in an application graph - preferably adjacent). On that step though,
conflicts may arise (e.g. chainability issues). Thus, in order to overcome that kind of problems,
this engine will update its recommendations based on the conflicts (e.g. check chainability
between each recommended component and exclude the not applicable ones). Moreover,
there could be additional features on this mechanism like the way to sort the set of the
recommended components (e.g. based on the performance of the components, based on the
ratings of the users, a hybrid method combined the abovementioned ways, etc.). Other
solutions that have been examined include graph processing, triad models, etc. The final
solution to be implemented will be finalized and scoped in the framework of WP2.

Page 24 of 52

Deliverable 1.2

6 Conclusions

This deliverable provides the specification and the developed metamodel of the 5G-ready
application graph. The metamodel addresses both the component and the overall application
spaces, including the required constructs / elements to capture the corresponding
information required for deployment and instantiation of the components and thus the
overall application. Furthermore, the deliverable provides an initial specification of a set of
supporting mechanisms that will analyse the information captured in the metamodels in
order to optimize the deployment and execution of 5G applications. These will be further
detailed and developed in the scope of WP2 of MATILDA project.

Page 25 of 52

Deliverable 1.2

References

[ARCADIA-D.2.2]
ARCADIA project deliverable, D2.2 Definition of the ARCADIA context model,
available online at: http://www.arcadia-framework.eu

[AVRO] Apache Avro, available online at: https://avro.apache.org

[Calçado-2017]
P. Calçado, “Pattern: Service Mesh”. Available online at:
http://philcalcado.com/2017/08/03/pattern_service_mesh.html

[Docker Compose]
Docker docs, available online at:
https://docs.docker.com/compose/startup-order/

[Envoy]
Envoy (an open source edge and service proxy) docs, available online
at: https://www.envoyproxy.io/docs/envoy/latest/intro/intro

[Gartner-2016]

 “Gartner’s Top 10 Strategic Technology Trends for 2017”. Available online at:
https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-
trends-
2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3BMN%2B0hmk
BTTuRW%2B53QE2hzw%3D%3D

[JSON]
Introducing JSON, available online at: https://www.json.org/

[Juju]
Juju Orchestrator, available online at: https://jujucharms.com/

[MATILDA-D.1.1]
D1.1 - MATILDA Framework and Reference Architecture, available
online at: http://www.matilda-5g.eu/index.php/outcomes

[MATILDA-D1.3]

D1.3 – VNF/PNF & VNF Forwarding Graph Metamodel, MATILDA
H2020 Project, Available Online: http://www.matilda-
5g.eu/index.php/outcomes

[MATILDA-D1.4]

D1.4 – Network Slice Intent and Instance Metamodel, MATILDA H2020
Project, Available Online: http://www.matilda-
5g.eu/index.php/outcomes

[Morgan-2017]

W. Morgan, “What’s a service mesh? And why do I need one?”. Available
online at: https://buoyant.io/2017/04/25/whats-a-service-mesh-and-
why-do-i-need-one/

[nodeRED]
https://nodered.org/

[ProtoBuf]
Protocol Buffers documentation, available online at:
https://developers.google.com/protocol-buffers/

[Puppet] https://puppet.com/

[XML]
Extensible Markup Language, available online at:
https://www.w3.org/XML/Overview.html

[YAML]
YAML Ain't Markup Language (YAML™) Version 1.2, available online at:
http://yaml.org

http://www.arcadia-framework.eu/
https://avro.apache.org/
http://philcalcado.com/2017/08/03/pattern_service_mesh.html
https://docs.docker.com/compose/startup-order/
https://www.envoyproxy.io/docs/envoy/latest/intro/intro
https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3BMN%2B0hmkBTTuRW%2B53QE2hzw%3D%3D
https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3BMN%2B0hmkBTTuRW%2B53QE2hzw%3D%3D
https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3BMN%2B0hmkBTTuRW%2B53QE2hzw%3D%3D
https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/?lipi=urn%3Ali%3Apage%3Ad_flagship3_pulse_read%3BMN%2B0hmkBTTuRW%2B53QE2hzw%3D%3D
https://www.json.org/
https://jujucharms.com/
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
http://www.matilda-5g.eu/index.php/outcomes
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://nodered.org/
https://developers.google.com/protocol-buffers/
https://puppet.com/
https://www.w3.org/XML/Overview.html
http://yaml.org/

Page 26 of 52

Deliverable 1.2

Appendix 1: Chainable Component & 5G-ready Application
Graph Metamodel (v1.0) Documentation

This appendix provides a complete guide to the first version of the chainable component
and 5G-ready application graph metamodel. The reader can click on XSD Elements and
navigate to the respective part of the documentation.

Elements
ComponentIdentifier
GraphLinkIdentifier
InterfaceIdentifier
ServiceMesh
ServiceMeshIdentifier

element ComponentIdentifier

diagram

type xs:string

properties content simple

used by elements ServiceMesh/Component Slice/DeploymentDescriptor/ComponentDeployment
ServiceMesh/Component/RequiredInterface/GraphLink
SliceIntent/Constraints/ComponentHostingConstraints/LocationConstraint
SliceIntent/Constraints/ComponentHostingConstraints/ResourceConstraint

annotation documentation
The descriptive identifier of the Component in the entire Service Mesh

source <xs:element name="ComponentIdentifier" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the Component in the entire Service
Mesh</xs:documentation>
 </xs:annotation>
</xs:element>

element GraphLinkIdentifier

diagram

type xs:string

properties content simple

used by elements ServiceMesh/Component/RequiredInterface/GraphLink
SliceIntent/Constraints/GraphLinkConstraints/GraphLinkQoSConstraint

annotation documentation
The descriptive identifier of a dependency between two Components

source <xs:element name="GraphLinkIdentifier" type="xs:string">

Page 27 of 52

Deliverable 1.2

 <xs:annotation>
 <xs:documentation>The descriptive identifier of a dependency between two
Components</xs:documentation>
 </xs:annotation>
</xs:element>

element InterfaceIdentifier

diagram

type xs:string

properties content simple

used by elements SliceIntent/Constraints/AccessConstraints/AccessConstraint
ServiceMesh/Component/ExposedInterface ServiceMesh/Component/RequiredInterface/GraphLink
Slice/DeploymentDescriptor/ComponentDeployment/InterfaceBinding

annotation documentation
It is provided as a metadata in order to infer chainability of dependencies

source <xs:element name="InterfaceIdentifier" type="xs:string">
 <xs:annotation>
 <xs:documentation>It is provided as a metadata in order to infer chainability of
dependencies</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh

diagram

properties content complex

children ServiceMeshIdentifier Name Component

Page 28 of 52

Deliverable 1.2

annotation documentation
Element that encapsulates a Service Mesh graph of a 5G Vertical Application

source <xs:element name="ServiceMesh">
 <xs:annotation>
 <xs:documentation>Element that encapsulates a Service Mesh graph of a 5G Vertical
Application</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ServiceMeshIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the vertical application. It will be used by
the repository for indexing purposes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Name" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive name of the Service Mesh</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Component" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each Service Mesh consists of multiple Components. At least one
Component should exist per Service Mesh. One component can have multiple dependencies
from other Components. However, circular dependencies are not allowed. Therefore a Service
Mesh is practically a Directed Acyclic Graph.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the Component in the entire Service
Mesh</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Distribution">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the information that is required for
fetching an instance of a Component</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ImageDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the
Image/Container</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RepositoryDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The URI of the repository where the component is
located</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Page 29 of 52

Deliverable 1.2

 <xs:element name="ExposedInterface">
 <xs:annotation>
 <xs:documentation>It can refer to a single port or a range of ports that serves this
interface. One interface can be Access or Core Type</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the interface. It is required in order
to infer chainability of dependencies during the Service Mesh deployment.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="InterfaceType">
 <xs:annotation>
 <xs:documentation>The classification of the exposed interface based on its
positioning in the 5G network. It can be ACCESS or CORE</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CORE"/>
 <xs:enumeration value="ACCESS"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Port">
 <xs:annotation>
 <xs:documentation>Refers to an internal port declaration or range e.g. 4000 or
4000-4005</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="TransmissionProtocol" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Can be TCP or UDP</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="UDP"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Configuration" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Set of environmental variables that should be provided to the
component during instantiation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Key" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Page 30 of 52

Deliverable 1.2

 <xs:element name="Volume" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the volume mounting that has to be
performed during the instantiation in the hypervisor</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="VolumeType" type="xs:string"/>
 <xs:element name="VolumeSource" type="xs:string"/>
 <xs:element name="VolumeTarget" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MinimumExecutionRequirements" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the minimum requirements that
have to be met by the hosting environment</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VCPUs" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of VCPUs that should be provided by the
hypervisor</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RAM" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of RAM in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Storage" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of Storage in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="HypervisorType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The type of Hypervisor that is prefered</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ESXI"/>
 <xs:enumeration value="KVM"/>
 <xs:enumeration value="XEN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExposedMetric" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The list of Metrics that are reported by the Component
Sidecar</xs:documentation>
 </xs:annotation>
 <xs:complexType>

Page 31 of 52

Deliverable 1.2

 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="MetricIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptiove identifier of the Metric</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="MeasurementUnit">
 <xs:annotation>
 <xs:documentation>The Unit of Measurement</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="RequiredInterface" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the required dependencies of other
components</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="GraphLink" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each dependency is modelled as a GraphLink
</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GraphLinkIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of a dependency between two
Components</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the component in the Service
Mesh that satisfies the requirement. The requestor is addressed as source (FROM) and the
component that offers the required interface is addressed as target (TO). This is the identifier of
the target.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the target Component interface
that is required</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Capability" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates Runtime capabilities of the

Page 32 of 52

Deliverable 1.2

Components that are considered inherent</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Scaling" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Scaling can be Horizontal (if the Component is completely
stateless), Vertical if the Component is statefull or Diagonal (i.e. both) in case of stateless
Components</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="HORIZONTAL"/>
 <xs:enumeration value="VERTICAL"/>
 <xs:enumeration value="DIAGONAL"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Name
diagram

type xs:string

properties isRef 0
content simple

annotation documentation
The descriptive name of the Service Mesh

source <xs:element name="Name" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive name of the Service Mesh</xs:documentation>
 </xs:annotation>
</xs:element>

Page 33 of 52

Deliverable 1.2

element ServiceMesh/Component
diagram

properties isRef 0
minOcc 1

maxOcc unbounded
content complex

children ComponentIdentifier Distribution ExposedInterface Configuration Volume MinimumExecutionRequirements
ExposedMetric RequiredInterface Capability

annotation documentation

Page 34 of 52

Deliverable 1.2

Each Service Mesh consists of multiple Components. At least one Component should exist per Service Mesh. One
component can have multiple dependencies from other Components. However, circular dependencies are not allowed.
Therefore a Service Mesh is practically a Directed Acyclic Graph.

source <xs:element name="Component" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each Service Mesh consists of multiple Components. At least one
Component should exist per Service Mesh. One component can have multiple dependencies
from other Components. However, circular dependencies are not allowed. Therefore a Service
Mesh is practically a Directed Acyclic Graph.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the Component in the entire Service
Mesh</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Distribution">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the information that is required for
fetching an instance of a Component</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ImageDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the
Image/Container</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RepositoryDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The URI of the repository where the component is
located</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExposedInterface">
 <xs:annotation>
 <xs:documentation>It can refer to a single port or a range of ports that serves this interface.
One interface can be Access or Core Type</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the interface. It is required in order to
infer chainability of dependencies during the Service Mesh deployment.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="InterfaceType">
 <xs:annotation>
 <xs:documentation>The classification of the exposed interface based on its positioning
in the 5G network. It can be ACCESS or CORE</xs:documentation>
 </xs:annotation>

Page 35 of 52

Deliverable 1.2

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CORE"/>
 <xs:enumeration value="ACCESS"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Port">
 <xs:annotation>
 <xs:documentation>Refers to an internal port declaration or range e.g. 4000 or 4000-
4005</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="TransmissionProtocol" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Can be TCP or UDP</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="UDP"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Configuration" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Set of environmental variables that should be provided to the
component during instantiation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Key" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Volume" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the volume mounting that has to be
performed during the instantiation in the hypervisor</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="VolumeType" type="xs:string"/>
 <xs:element name="VolumeSource" type="xs:string"/>
 <xs:element name="VolumeTarget" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="MinimumExecutionRequirements" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the minimum requirements that have to
be met by the hosting environment</xs:documentation>
 </xs:annotation>

Page 36 of 52

Deliverable 1.2

 <xs:complexType>
 <xs:sequence>
 <xs:element name="VCPUs" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of VCPUs that should be provided by the
hypervisor</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RAM" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of RAM in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Storage" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of Storage in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="HypervisorType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The type of Hypervisor that is prefered</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ESXI"/>
 <xs:enumeration value="KVM"/>
 <xs:enumeration value="XEN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="ExposedMetric" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The list of Metrics that are reported by the Component
Sidecar</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="MetricIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptiove identifier of the Metric</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="MeasurementUnit">
 <xs:annotation>
 <xs:documentation>The Unit of Measurement</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="RequiredInterface" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the required dependencies of other
components</xs:documentation>

Page 37 of 52

Deliverable 1.2

 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="GraphLink" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each dependency is modelled as a GraphLink
</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GraphLinkIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of a dependency between two
Components</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the component in the Service Mesh
that satisfies the requirement. The requestor is addressed as source (FROM) and the component
that offers the required interface is addressed as target (TO). This is the identifier of the
target.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the target Component interface that
is required</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Capability" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates Runtime capabilities of the
Components that are considered inherent</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Scaling" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Scaling can be Horizontal (if the Component is completely
stateless), Vertical if the Component is statefull or Diagonal (i.e. both) in case of stateless
Components</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="HORIZONTAL"/>
 <xs:enumeration value="VERTICAL"/>
 <xs:enumeration value="DIAGONAL"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

Page 38 of 52

Deliverable 1.2

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/Distribution
diagram

properties isRef 0
content complex

children ImageDescriptor RepositoryDescriptor

annotation documentation
The element that encapsulates the information that is required for fetching an instance of a Component

source <xs:element name="Distribution">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the information that is required for fetching
an instance of a Component</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ImageDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the Image/Container</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RepositoryDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The URI of the repository where the component is
located</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/Distribution/ImageDescriptor
diagram

type xs:string

properties isRef 0
content simple

Page 39 of 52

Deliverable 1.2

annotation documentation
The descriptive identifier of the Image/Container

source <xs:element name="ImageDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the Image/Container</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/Distribution/RepositoryDescriptor
diagram

type xs:string

properties isRef 0
content simple

annotation documentation
The URI of the repository where the component is located

source <xs:element name="RepositoryDescriptor" type="xs:string">
 <xs:annotation>
 <xs:documentation>The URI of the repository where the component is
located</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/ExposedInterface
diagram

properties isRef 0
content complex

children InterfaceIdentifier InterfaceType Port TransmissionProtocol

annotation documentation
It can refer to a single port or a range of ports that serves this interface. One interface can be Access or Core Type

Page 40 of 52

Deliverable 1.2

source <xs:element name="ExposedInterface">
 <xs:annotation>
 <xs:documentation>It can refer to a single port or a range of ports that serves this interface.
One interface can be Access or Core Type</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the interface. It is required in order to infer
chainability of dependencies during the Service Mesh deployment.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="InterfaceType">
 <xs:annotation>
 <xs:documentation>The classification of the exposed interface based on its positioning in
the 5G network. It can be ACCESS or CORE</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CORE"/>
 <xs:enumeration value="ACCESS"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Port">
 <xs:annotation>
 <xs:documentation>Refers to an internal port declaration or range e.g. 4000 or 4000-
4005</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="TransmissionProtocol" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Can be TCP or UDP</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="UDP"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/ExposedInterface/InterfaceType
diagram

Page 41 of 52

Deliverable 1.2

type restriction of xs:string

properties isRef 0
content simple

facets enumeration CORE
enumeration ACCESS

annotation documentation
The classification of the exposed interface based on its positioning in the 5G network. It can be ACCESS or CORE

source <xs:element name="InterfaceType">
 <xs:annotation>
 <xs:documentation>The classification of the exposed interface based on its positioning in the
5G network. It can be ACCESS or CORE</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="CORE"/>
 <xs:enumeration value="ACCESS"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

element ServiceMesh/Component/ExposedInterface/Port
diagram

properties isRef 0

annotation documentation
Refers to an internal port declaration or range e.g. 4000 or 4000-4005

source <xs:element name="Port">
 <xs:annotation>
 <xs:documentation>Refers to an internal port declaration or range e.g. 4000 or 4000-
4005</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/ExposedInterface/TransmissionProtocol
diagram

type restriction of xs:string

properties isRef 0
minOcc 0

maxOcc 1
content simple

facets enumeration TCP
enumeration UDP

annotation documentation
Can be TCP or UDP

source <xs:element name="TransmissionProtocol" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Can be TCP or UDP</xs:documentation>
 </xs:annotation>

Page 42 of 52

Deliverable 1.2

 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="TCP"/>
 <xs:enumeration value="UDP"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

element ServiceMesh/Component/Configuration
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children Key Value

annotation documentation
Set of environmental variables that should be provided to the component during instantiation

source <xs:element name="Configuration" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Set of environmental variables that should be provided to the component
during instantiation</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Key" type="xs:string"/>
 <xs:element name="Value" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/Configuration/Key
diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="Key" type="xs:string"/>

element ServiceMesh/Component/Configuration/Value
diagram

type xs:string

properties isRef 0
content simple

Page 43 of 52

Deliverable 1.2

source <xs:element name="Value" type="xs:string"/>

element ServiceMesh/Component/Volume
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children VolumeType VolumeSource VolumeTarget

annotation documentation
The element that encapsulates the volume mounting that has to be performed during the instantiation in the hypervisor

source <xs:element name="Volume" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the volume mounting that has to be
performed during the instantiation in the hypervisor</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="VolumeType" type="xs:string"/>
 <xs:element name="VolumeSource" type="xs:string"/>
 <xs:element name="VolumeTarget" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/Volume/VolumeType
diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="VolumeType" type="xs:string"/>

element ServiceMesh/Component/Volume/VolumeSource
diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="VolumeSource" type="xs:string"/>

Page 44 of 52

Deliverable 1.2

element ServiceMesh/Component/Volume/VolumeTarget
diagram

type xs:string

properties isRef 0
content simple

source <xs:element name="VolumeTarget" type="xs:string"/>

element ServiceMesh/Component/MinimumExecutionRequirements
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children VCPUs RAM Storage HypervisorType

annotation documentation
The element that encapsulates the minimum requirements that have to be met by the hosting environment

source <xs:element name="MinimumExecutionRequirements" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the minimum requirements that have to be
met by the hosting environment</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="VCPUs" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of VCPUs that should be provided by the
hypervisor</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="RAM" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of RAM in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Storage" minOccurs="0">

Page 45 of 52

Deliverable 1.2

 <xs:annotation>
 <xs:documentation>Minimum amount of Storage in MBytes</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="HypervisorType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The type of Hypervisor that is prefered</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ESXI"/>
 <xs:enumeration value="KVM"/>
 <xs:enumeration value="XEN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/MinimumExecutionRequirements/VCPUs
diagram

type xs:int

properties isRef 0
minOcc 0

maxOcc 1
content simple

annotation documentation
Minimum amount of VCPUs that should be provided by the hypervisor

source <xs:element name="VCPUs" type="xs:int" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of VCPUs that should be provided by the
hypervisor</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/MinimumExecutionRequirements/RAM
diagram

properties isRef 0
minOcc 0

maxOcc 1

annotation documentation
Minimum amount of RAM in MBytes

source <xs:element name="RAM" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of RAM in MBytes</xs:documentation>
 </xs:annotation>

Page 46 of 52

Deliverable 1.2

</xs:element>

element ServiceMesh/Component/MinimumExecutionRequirements/Storage
diagram

properties isRef 0
minOcc 0

maxOcc 1

annotation documentation
Minimum amount of Storage in MBytes

source <xs:element name="Storage" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Minimum amount of Storage in MBytes</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/MinimumExecutionRequirements/HypervisorType
diagram

type restriction of xs:string

properties isRef 0
minOcc 0

maxOcc 1
content simple

facets enumeration ESXI
enumeration KVM
enumeration XEN

annotation documentation
The type of Hypervisor that is prefered

source <xs:element name="HypervisorType" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The type of Hypervisor that is prefered</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="ESXI"/>
 <xs:enumeration value="KVM"/>
 <xs:enumeration value="XEN"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Page 47 of 52

Deliverable 1.2

element ServiceMesh/Component/ExposedMetric
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children MetricIdentifier MeasurementUnit

annotation documentation
The list of Metrics that are reported by the Component Sidecar

source <xs:element name="ExposedMetric" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The list of Metrics that are reported by the Component
Sidecar</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="MetricIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptiove identifier of the Metric</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="MeasurementUnit">
 <xs:annotation>
 <xs:documentation>The Unit of Measurement</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/ExposedMetric/MetricIdentifier
diagram

properties isRef 0

annotation documentation
The descriptiove identifier of the Metric

source <xs:element name="MetricIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptiove identifier of the Metric</xs:documentation>
 </xs:annotation>
</xs:element>

Page 48 of 52

Deliverable 1.2

element ServiceMesh/Component/ExposedMetric/MeasurementUnit
diagram

properties isRef 0

annotation documentation
The Unit of Measurement

source <xs:element name="MeasurementUnit">
 <xs:annotation>
 <xs:documentation>The Unit of Measurement</xs:documentation>
 </xs:annotation>
</xs:element>

element ServiceMesh/Component/RequiredInterface
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children GraphLink

annotation documentation
The element that encapsulates the required dependencies of other components

source <xs:element name="RequiredInterface" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates the required dependencies of other
components</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="GraphLink" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each dependency is modelled as a GraphLink </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GraphLinkIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of a dependency between two
Components</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the component in the Service Mesh
that satisfies the requirement. The requestor is addressed as source (FROM) and the component
that offers the required interface is addressed as target (TO). This is the identifier of the
target.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="InterfaceIdentifier">

Page 49 of 52

Deliverable 1.2

 <xs:annotation>
 <xs:documentation>The descriptive identifier of the target Component interface that is
required</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/RequiredInterface/GraphLink
diagram

properties isRef 0
minOcc 1

maxOcc unbounded
content complex

children GraphLinkIdentifier ComponentIdentifier InterfaceIdentifier

annotation documentation
Each dependency is modelled as a GraphLink

source <xs:element name="GraphLink" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each dependency is modelled as a GraphLink </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GraphLinkIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of a dependency between two
Components</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="ComponentIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the component in the Service Mesh that
satisfies the requirement. The requestor is addressed as source (FROM) and the component that
offers the required interface is addressed as target (TO). This is the identifier of the

Page 50 of 52

Deliverable 1.2

target.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="InterfaceIdentifier">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the target Component interface that is
required</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

element ServiceMesh/Component/Capability
diagram

properties isRef 0
minOcc 0

maxOcc 1
content complex

children Scaling

annotation documentation
The element that encapsulates Runtime capabilities of the Components that are considered inherent

source <xs:element name="Capability" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The element that encapsulates Runtime capabilities of the Components
that are considered inherent</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Scaling" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Scaling can be Horizontal (if the Component is completely stateless),
Vertical if the Component is statefull or Diagonal (i.e. both) in case of stateless
Components</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="HORIZONTAL"/>
 <xs:enumeration value="VERTICAL"/>
 <xs:enumeration value="DIAGONAL"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Page 51 of 52

Deliverable 1.2

element ServiceMesh/Component/Capability/Scaling
diagram

type restriction of xs:string

properties isRef 0
minOcc 0

maxOcc 1
content simple

facets enumeration HORIZONTAL
enumeration VERTICAL
enumeration DIAGONAL

annotation documentation
Scaling can be Horizontal (if the Component is completely stateless), Vertical if the Component is statefull or Diagonal
(i.e. both) in case of stateless Components

source <xs:element name="Scaling" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Scaling can be Horizontal (if the Component is completely stateless),
Vertical if the Component is statefull or Diagonal (i.e. both) in case of stateless
Components</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="HORIZONTAL"/>
 <xs:enumeration value="VERTICAL"/>
 <xs:enumeration value="DIAGONAL"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

element ServiceMeshIdentifier
diagram

type xs:string

properties content simple

used by elements ServiceMesh SliceIntent

annotation documentation
The descriptive identifier of the vertical application. It will be used by the repository for indexing purposes

source <xs:element name="ServiceMeshIdentifier" type="xs:string">
 <xs:annotation>
 <xs:documentation>The descriptive identifier of the vertical application. It will be used by the
repository for indexing purposes</xs:documentation>
 </xs:annotation>
</xs:element>

Page 52 of 52

Deliverable 1.2

	Deliverable D1.2
	Chainable Application Component & 5G-ready Application Graph Metamodel
	Disclaimer
	Copyright
	Table of Contents
	1 Executive Summary
	2 Introduction
	2.1 Scope of the Deliverable
	2.2 Structure of the Document

	3 Baseline Technologies
	3.1 Existing Solutions
	3.2 Modelling Languages
	YAML
	XML
	JSON
	AVRO
	Protocol Buffers

	3.3 Service Mesh

	4 Overview of the Metamodel
	4.1 Application Component Part
	4.2 Application Graph / Service Mesh Part

	5 Support Mechanisms Suite
	5.1 Overall Architecture
	5.2 Supporting Mechanisms
	Configurability Checker
	Chainability Evaluator
	Performance Estimator
	Graph Level Aggregator
	Optimizer
	Recommendation Engine

	6 Conclusions
	References
	Appendix 1: Chainable Component & 5G-ready Application Graph Metamodel (v1.0) Documentation

