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1 | INTRODUCTION

Telecommunication networks are undergoing a profound evolution, which is bringing part of their infrastructure ever
closer to that of computing systems. With the advent of Software Defined Networking (SDN) [10] and Network
Functions Virtualization (NFV) [12], Network Service Providers (NSPs) have started considering an increasing level of
“softwarization” of the functionalities to be performed, especially as regards the access segment [11]. This trend has
been further strengthened by Mobile Edge Computing (MEC) [7], [9], and by the consolidation of the fifth generation
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of mobile networks (5G) [2], providing a much stronger integration between the wireless mobile access and the fixed
transport network and enhancing configuration flexibility through the concept of network slicing [13].

In this scenario, more and more often resource allocation and network control problems are encountered that present
analogies with similar settings in computing systems and datacenters, and the boundary between communications and
computing is becoming increasingly blurred. Typically, given a set of general-purpose computing machinery, deployed
by an Infrastructure Provider (InP) - or by the NSP itself over the networking infrastructure of the InP - they will
host multiple tenants that act as NSPs for their (fixed or mobile) customers; the latter run applications on their User
Equipment (UE) that may need computing resources that are partly local (on the very same UE) and partly residing in
a datacentre or at the mobile edge (with the latter subject to possible latency constraints that may require resource
reallocations to follow users on the move).

We address the modelling and control architecture of a logistics transportation problem in this framework, where
multiple incoming flows with Quality of Service (QoS) requirements (specifically, on latency) share the computational
resources of micro-datacenters located at the network edge, which offer them through Virtual Machines (VMs). By
modelling the incoming traffic generated by each flow in the form of bursts of packets, we adopt a simple but general
model for the queueing systems that represent packet-level processing. On top of this, we construct an optimization
scheme to implement the assignment and load balancing of incoming flows (characterized by statistical models with
much longer time scales than the packet traffic they generate) to the processing queues, over time periods within
which they are served with constant rates.

Many logistics/production processes involve monitoring of goods, especially during the transportation between parts’
suppliers and a production site. Examples of this include, among others, manufacturing processes where the final prod-
uct requires the assembly of many complex and delicate component parts (see, e.g., [3], [14]). In other environments,
measurements by multiple sensor nodes are collected and processed in a distributed infrastructure to provide quality
control (e.g., temperature variations in the meat industry [17]). The 5G and MEC evolution allows an unprecedented
and much more sophisticated than in the past real-time monitoring of the goods being transported.

The paper is organized as follows. We describe the logistics scenario in more detail in the next section. Section 3
contains the mathematical problem formulation, along with the description of the control architecture and data traffic

models. The fourth Section reports our numerical evaluation results and the fifth Section contains the conclusions.

2 | A LOGISTIC USE CASE

The specific use case we consider in this paper regards a logistics scenario stemming from the MATILDA 5G PPP
H2020 European Project!, where it has been conceived as one out of five different use cases to demonstrate the
project outcomes (termed specifically “Distributed Logistics-Production Maintenance Application” (DLPMA) use case).
It is described in detail in one of the project deliverables [1] 2 and its functional components are represented in Figure
1. The general goal of the MATILDA project is to deliver a holistic and innovative fifth-generation mobile network (5G)
framework to undertake the design, development and orchestration of 5G-ready vertical applications (vApps) and 5G
network services over programmable infrastructures.

The scenario refers to a transport to be tracked, starting from a supplier and moving to a production facility. The
goal is to monitor in real-time the goods loaded being transferred, as they are supposed to be very fragile and to need

sensitive handling. To this purpose, data from the various components, such as temperature, humidity and vibrations

lh'c'cps://www.ma'tilda-5g4eu
2Not for public download; it can be requested to the project management.
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Use case Scenario 5G Environment

IoT Sensors Access Network Backhaul Network with
Micro-datacentres

FIGURE 1 DLPMA scenario with main modules and components (adapted from [1]; courtesy of BIBA - Bremer
Institut fir Produktion und Logistik GmbH, Bremen, Germany).

are transmitted in real-time, as is customary in IoT (Internet of Things) applications, in order to provide the various
clients with the possibility to monitor their own goods all over the duration of the transport. At the same time, data
are collected and stored at a central facility for further analysis aimed at optimizing the transportation process.

The data collection process at the application level is effected through a publish/subscribe mechanism provided by
a Kafka message broker and distributed streaming platform 3. Kafka is the actual message broker where customers
can subscribe to, in order to consume data that are produced asynchronously and need to be delegated among the
various users. The monitored components are mainly the above-mentioned sensors for temperature, humidity and
vibrations. Further, a GPS-module is implemented for tracking. All sensor data are collected by a center node on board
the transport that manages the sensor and GPS data (loT nodes) and sends them via 5G to the application modules
implemented as cloud or fog/edge services.

The DLPMA Platform provides functionalities related to: i) Batch Data Analytics, where the user may view the results
on analysis that was performed on data that were statically collected, such as historical and current maintenance data;
ii) Stream Data Analytics, where the user may view the results of the analysis performed on data that are dynamically
collected through sensors and processed by prediction modules to produce forecasts; iii) Decision Making, where the
user may receive prescriptions of future actions and manage them by providing approval/disapproval; iv) Risk Assess-
ment, where the user may view an overall criticality assessment of the monitored assets. Real-time data analytics,
positioning and housekeeping of goods (also based on offline analytics and past process history), as well as decision
making, are all computationally-intensive processes.

Without going into details of the platform and data treatment and formats, we concentrate here on an abstract de-
scription of the arriving data streams that must be processed in real time by the analytics module. We assume that a
fleet of multiple transportation means generates measurement data organized in multiple topics. Moreover - actually

going beyond the specific implementation considered in the MATILDA project, and with a perspective that addresses

3 https:/kafka.apache.org/
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Mobile Edge Computing applications [7], [9] - we also consider a distributed edge computing scenario, where multiple
micro-datacenters may be deployed in various geographical zones traversed by the transports, as they move along
toward their destinations. The micro-datacenters may be characterized by different computational resources, so that
they may provide processing by Virtual Machines at different computational speeds. For each operational zone tra-
versed, a specific micro-datacenter is designated to work as a dispatcher of the streams generated by the transports
in a certain coverage area, and decides upon the assignment of the streams it receives to other micro-datacenters
(possibly including itself); the assignment lasts for the duration of the stream, which is composed by multiple batches
of measurements to be processed regarding a certain product. Our goal is to decide on the dispatching of the various
flows generated by the data streams to the computational units provided by the Edge micro-datacenters, in order to
balance the load and minimize the overall average processing delay.

We model the incoming traffic generated by each flow in the form of bursts of packets, and we adopt a simple but
general model for the queueing systems that represent packet-level processing. On top of this, we construct our
optimization scheme to implement the assignment and load balancing of incoming flows (which are characterized by
statistical models with much longer time scales than the packet traffic they generate) to the processing queues, over
time periods within which they are served with constant rates. The modelling and optimization problem we consider

here is a slight modification of the one we treated in [6] in the context of Network Functions Virtualization (NFV).

3 | FLOW MODELLING AND OPTIMIZATION PROBLEM STATEMENT

The abstract representation as a queueing system of our logistics use case with distributed computations is repre-
sented in Figure 2. Each queue corresponds to a Virtual Machine (VM), residing in specific micro-datacentres. The
latter may be equipped with different computational resources, depending on their location and hardware config-
uration. For this reason, we suppose that, in general, VMs residing in different micro-datacentres may have been
assigned virtual CPUs characterized by different computational speeds. These speeds represent the service rates
RM(t),....RM (1), satisfying 3.7, R (t) = R(t), where M is the total number of VMs assigned to our logistic ap-
plication, along with a total processing capacity pool R(t). The task of steering the traffic is performed by a Software
Defined Network (SDN) controller covering the geographical area of interest, to which the first packets of a flow are
directed for classification when the flow is activated.

Assuming the processing capacities RV (¢),..., R™) (¢) to have been fixed, we consider each queue with its own
independent buffer in stationary conditions (and we drop the dependence on ¢ in the following). Incoming flows are
distributed among the processors on the basis of coefficients ¢V > 0,...,¢M >0, =M, ¢ =1 (to be determined
through an optimization procedure that will be described later; for the time being, they are considered fixed), in the
sense that each incoming flow is assigned randomly to a processor upon its birth, according to the probability distri-
bution determined by the coefficients.

We suppose the generation of flows to be such that each flow corresponds to a source, following a birth-death model.
Packet bursts within each active flow are generated according to a Poisson model with Long-Range-Dependent (LRD)
burst length. In order to take into account the traffic generation at the flow level (i.e., that the LRD traffic entering
the queue is the aggregate of LRD traffic streams produced by individual flows), for each queue / we consider the
average waiting time W) (a()), a() = ¢() mAg calculated by means of an M*/G/1 [16] queueing model, when the

aggregate burst rate is determined by the presence of m total active flows, each with burst generation rate equal to
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A and average burst length (in packets) 8. Namely, from [16], we have

o2 pt (ﬁ/ﬁ - 1)

200 mAp(1+02, 1SD2)(1-p0) 200 map(1-p)

W(/')(a(i)) — (1)

where $() is the service time (depending on the distribution of the amount of operations to be performed per packet

and on the processing speed R(), with £{S)} = 1 mu) and mean square value and variance S()2 and Ué(f‘)'

respectively, p() = ¢ mAgu() is the utilization, and X2 is the mean square value of the burst length.

Flow (1) Flow (2) Flow (i) Flow (K

R™M(r)

Scheduler

R(E)

FIGURE 2 Flow assignment problem.

We note, in passing, that more general models could be also considered; for instance, if energy consumption is
to be included as another Key Performance Indicator (KPI) to be traded off with latency, the M*/G/1/SET could
be adopted to account for set up times for processor wakeup (as done in [4], [5] in the case of deterministic service
times).

It is worth noting that the model we are describing refers to a cluster of VMs dedicated to serve a single class of traffic,
characterized by equal generation parameters (that can represent, for instance, the output of specific sensing devices).
The situation of flows with unequal burst generation rates can be handled in a similar way if service separation with
static partitions [15] is applied, i.e., services giving rise to flows with similar statistical nature are grouped into classes
and assigned to a subset of processors for each class; more general formulations are possible, along the lines of [15]
and have been briefly discussed in [6].

As the time scales at the burst- and flow-level are widely different, it makes sense to consider that variations in the
number of flows occur on a much longer time scale with respect to that of events in the Markov chain describing the

dynamics of packets in the queue. Based on this consideration, we can ignore non-stationary behaviours, and assume
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that a stationary state in the queue probabilities is reached almost instantaneously between birth and death events
at the flow level (a precise treatment of a somehow related problem can be found in [8]).

Under the above flow distribution strategy and the assumption of homogeneous flows, the same burst generation
model holds for the flows being assigned to each processor. Therefore, we can examine each queue in isolation,
conditioned to the presence of m total flows in the system, as an M*/G/1 queue with input rate ¢) mAg [pkts/s],
i=1,...,M.

In order to avoid instability, the following condition must be satisfied for each queue:

)
p D =D mag/u < 1ie.m® = mg < lj\ﬁ 2)

so that the maximum number of flows m,(,’;)zx acceptable by queue / is equal to |V /AB], | x| being the largest integer
less than or equal to x.
This also imposes the presence of a Call Admission Control (CAC) on the system, such that the maximum number of

flows totally acceptable be limited to

M
mmax:;\‘AﬁJ (3)
At this point, we can average out the delay over the distribution of the flows. To this aim, we suppose that both
interarrival times and durations of flows can be described by independent exponential distributions, with parameters
Ar and pr, respectively. Let Ar = Ar/ur [Erlang] denote the traffic intensity of the flows. Then, the probability p(’)

that & flows are active (producing bursts) on the it" processor’s queue is given by

i k
» ; c<'>Af (¢D Ap)" k!
P\ = Prim® =k} = p{) ﬂ - )m — k=01....mp, (4)
J Mmax (! Af)
4j=0 Ji

Thus, we can write

(/)
w = (1 (,)) Z p(')W(/) (C(I)k/\ﬁ) (5)

for the average (with respect to the total number of flows) delay per queue (considering the presence of at least one
active flow at the it VM) and

w=Sw"¢ @)

e

i=1

for the total average delay over all flows. The upper limit of the sum in (5) is necessary as a consequence of condition
(2).

There is however a final condition to be accounted for. From (4), the blocking probabilities of each VM are given by
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. (i) p
. (I)A Mmax m(’) |
(/zl_) :M i=0.1,....M (7)
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The blocking probabilities are required to be less than a given threshold Pg (assumed to be equal for all VMs).

Then, an optimization problem can be posed for the selection of the traffic spreading coefficients as

min
¢M>0,..¢M >0
M. =1

4 | PERFORMANCE EVALUATION

We present and comment here numerical results for the evaluation of the method proposed. They have been obtained
by using the optimization tools available in the Python library Scipy 4, and, in particular, the SLSQP (Sequential Least
SQuares Programming) optimization method.

Table 1 summarizes the numerical values of the considered reference scenario.

TABLE 1 Numerical values of the model’s parameters.

Ar =10 [Erlangs] A =10 [bursts/s] B = 1.5 [pkts/burst] Pg <0.01
X2=3 ad =10 i=1,....M R = 2,000,000 — i - 200,000 [opers/s] = N, = 1000 [opers/pkt]
u® =Ny /RO 5D = (aD = 1)ja® .y SN2 = (N2 gy /(a) - 2) 0(2[) =82 _1/uy"2

We have assumed a continuous approximation of the burst length, with a Pareto distribution with location pa-
rameter § = 1 and shape parameter a = 3. Besides, we have assumed a Pareto distribution of the service time of
each VM with shape parameter a(") and location parameter 6() as reported in Table 1. N, is the average number of
operations per packet.

Different tests have been performed to assess the proposed strategy in different traffic flow conditions and with
a different number of VMs in the scenario.

Figure 3 shows the values of the coefficients ¢(") obtained as the output of the optimization tool considering a
different number of VMs (M) from 2 to 7 and by varying the burst arrival rate A in the range [10,200] with discrete
steps of 10 bursts/s. In these cases, the parameters R(), y() 60, §(12, and ag(/) will assume numerical values in
accordance with the related equations in Table 1.

The trends of the coefficients ¢ () shows that at high traffic the proposed strategy tends to distribute the incoming
traffic flows to all the available VMs proportionally to their processing speeds R(). At higher A, each () value
gets closer and closer to a sort of asymptotic value which is I?(">/Zj"i1 RU). Instead, at low traffic, the proposed
strategy steers higher percentages of incoming traffic flows than the related asymptotic values to the VMs with higher
processing speed (e.g., only the first VM with M = 2 and the first two VMs with M = 3). The main reason is that when

4Www.scipy.org
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Ais small, the queues of the “fastest” VMs does not increase significantly. They are almost able to process each single
flow before the arrival of the next one, so they are almost always the best choice to reduce the obtained delay. In
the extreme case that the processing speed of one VM is higher than the arrival rate of the new flows, the VM's
queue of traffic flows waiting to be processed will be always empty and the presence of other VMs would not give
additional benefits to the system in terms of lower delay. This aspect is also the reason why the system automatically
and gradually “enables” more VMs with increasing values of , as can be seen looking at Figure 3 with M greater than
4,

Figure 4 shows the results in terms of the total average delay over all traffic flows W, i.e. the performance index
to be minimized, obtained by dynamically setting the coefficients ¢ (") as indicated by our proposed strategy (Dynamic
choice). Also in this case, these results have been obtained by considering a different number of VMs (M) from 2 to 7
and by varying the burst arrival rate A in the range [10, 200] with discrete steps of 10 bursts/s. A static choice has been
considered as comparison, which consists in statically setting the coefficients ¢() depending only on the processing
speeds R() (Static choice). In detail, ¢() = R(")/Zj"i1 R,

The obtained total average delay grows with increasing A, while the difference between the two considered strate-
gies decreases. The latter effect is due to the trend of the values of coefficients ¢() exhibited in the optimization
procedure. At high traffic, they converge to the asymptotic values by using our dynamic and traffic-dependent choice,
which coincide with the ¢() values set by using the static choice for all the considered A. For M lower than 5, the
difference between the two considered solutions becomes 0 within the considered range of values for A, because all
VMs are “activated” by our strategy and the related ¢() values almost reach the asymptotical ones. For M = 6 and
M = 7itis not so, as can be seen by looking at Figure 3. ¢(® and ¢(7) are always 0, so there is still a difference between

the ¢() values corresponding to the two strategies.

A last set of tests have been performed with constant A = 100 [bursts/s] and by varying the traffic intensity
of the flows Ar up to the maximum possible value we can set to have a solution which satisfies all the considered
constraints. The obtained results are shown in Figure 5. Also these results confirm the performance improvement
achieved by employing our proposed strategy especially with higher Ar values.

5 | CONCLUSIONS

The advent of 5G and MEC has enabled much greater capabilities for real-time monitoring and optimization in many
application areas, including logistics and transport. Leveraging on these technologies, we have considered an opti-
mization problem for the dispatching of analytics and decision support calculations in micro-datacentres located at
the edge (access and backhaul networks) based on loT real-time data collected by a set of goods being transported
from supply centres to production facilities. Our emphasis has been centred on the operational complexity (repre-
sented by the statistical distribution of the number of operations per second to be performed on the data) and on the
statistical nature of the network traffic generated by sensor measurements. We have defined an optimization problem
based on this modelling scheme, aimed at minimizing the overall average delay in the system'’s response. The model
stems from a real transportation scenario, which has been derived from one of the MATILDA project’s use cases.
Numerical results have shown a reasonable behaviour of the optimized solution based on the model’s parameters.
Future work will consider the identification and adaptation of the latter on the basis of measurements derived from

real sensor-generated data.
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FIGURE 3 Values of the coefficients () obtained by considering different numbers M of VMs (from 2 to 7),
against values of A (lambda) in the range [10,200] [bursts/s].
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FIGURE 4 Total average delay over all traffic flows obtained considering a different number of VMs M from 2 to
7 against values of A (lambda) in the range [10,200] [bursts/s]: Comparison between our strategy (dynamic choice)
and a static strategy (static choice) regarding the assignment of coefficients ¢ (7).
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