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1 Introduction 

In order to meet the increased demands from the consumer and business networking 
perspectives, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) 
and Software Defined Networking (SDN), brought together, will lift to higher levels the 
computing capabilities and system-wide utility and efficiency of underlying infrastructure. 
When the combination of the programmability, scalability, flexibility and low latency 
characteristics of the aforementioned enabling technologies are leveraged, vertical network 
applications can easily be orchestrated while ensuring certain set Quality of Service (QoS) 
within the lifecycle of applications running on the network.  

By leveraging these technological paradigms, the main system architecture taken as 
reference by the MATILDA project is a multi-layered and multi-tenant framework, fully 
compliant with the latest specification of 3GPP, ETSI NFV and cloud-native orchestration areas, 
and able to reflect the various administrative domains in a 5G network. The main peculiarity 
and advantage of the foundation of the MATILDA architecture consists of exposing 5G networks 
to application providers as a simple extension to today’s Cloud Computing technologies, 
paradigms, and interfaces. Such an offering is exploited by Over-the-Top (OTT) players or Cloud 
Computing Applications providers in order to deploy and manage cloud-native applications, 
able to take advantage of 5G networks evolution. This flexibility and extensibility will be 
achieved by relying entirely on the MATILDA architecture that combines the aforementioned 
technologies.  
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In this respect, this whitepaper focuses on the design of the MATILDA vertical applications 
orchestrator (VAO) that is responsible for the lifecycle management of cloud-native 
applications based on their deployment over a 5G programmable infrastructure. The latter is 
managed by the MATILDA network platform that exposes an abstract view of the available 
resources to the VAO, while it realises the lifecycle management of network slices to serve the 
application needs. Following, we initially provide details for the MATILDA end to end story and 
the overall MATILDA reference architecture and, then, we delve into a detailed presentation of 
the VAO components. 

2 MATILDA End to End Story 

MATILDA comes up with a novel and holistic approach for tackling the overall lifecycle of 
applications’ design, development, deployment and orchestration in a 5G ecosystem. A set of 
novel concepts are introduced, including the design and development of 5G-ready applications 
-based on cloud-native/microservices-based applications development principles, the 
separation of concerns among the orchestration of the developed applications and the required 
network services that support them, as well as the specification and management of network 
slices that are application-aware and can lead to optimal application execution. 

MATILDA follows a top-down approach where applications design and development leads to 
the instantiation of application aware-network slices, over which vertical industries 
applications can be optimally served. Different stakeholders are engaged in this process, 
however with clear separation of concerns among them (see Figure 1). 

 

Figure 1: MATILDA Stakeholders View. 
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Software developers are developing applications following a microservices-based approach 
where each application component can be independently orchestratable. Based on the 
conceptualization of a metamodel (application graph metamodel), they declare information 
and requirements -in the form of an application descriptor- that can be exploited during the 
applications deployment and operation over programmable infrastructure. Such information 
and requirements may regard capabilities, envisaged functionalities and soft or hard 
constraints that have to be fulfilled and may be associated with an application component or a 
virtual link interconnecting two components within an application graph. The produced 
application is considered as 5G-ready application. 

Application/Service Providers are able to adopt the developed 5G-ready applications and 
specify policies and configuration options for their optimal deployment and operation over 
programmable infrastructure. Based on the provided application descriptor, 
application/service providers are able to design operational policies that have to be applied as 
well as formulate the slice intent for the creation of the appropriate application-aware network 
slice. An application-aware network slice -that has to be provided by a communication service 
provider- is including information regarding the set of constraints that have to be fulfilled 
during the placement of the application and a set of envisaged network functionalities that have 
to be provided. Operational policies regard runtime adaptation of the execution mode of an 
application component. The deployment and runtime management of an application is realised 
by the Vertical Applications Orchestrator (managed by the application/service provider), while 
the instantiation and management of the application-aware network slice (including the set of 
network functions) is realised by the Network and Computing Slice Deployment Platform 
(managed by the communications service provider). Vertical applications orchestration is 
realised following a service-mesh-oriented approach.  

The recently introduced service mesh concept is adopted as a software management layer for 
controlling and monitoring internal, service-to-service traffic in microservices-based 
applications. It consists of a data and a control plane. The data plane consists of a set of 
intelligent proxies deployed alongside the application software components supporting the 
provision of support/backing services (e.g. service discovery, load balancing, health checking, 
telemetry). The control plane manages the set of intelligent proxies based on distributed 
management techniques and provides policy and configuration guidance for all the running 
support/backing services. Policies definition for the activation and management of the set of 
required support/backing services is realised based on a policies editor, while policies 
enforcement is realised based on a rules-based management system. Advanced monitoring and 
analysis techniques are also applied for extracting insights that can be proven useful for 
application/service providers. 

Communication Service Providers are getting the application deployment request by the 
Vertical Application Orchestrator and are able to proceed to the application-aware network 
slice instantiation and management during the overall lifecycle of the 5G-ready application. The 
concept of network slice is used for deployment and management of the required network 
services based on vertical application needs. A network slice is a logical infrastructure 
partitioning allocated resources and optimized topology with appropriate isolation, to serve a 
particular purpose of an application graph. Network slice instantiation and management is 
realised by the Network and Computing Slice Deployment Platform that includes an OSS/BSS 
system, a NFVO and a resources manager for managing the set of deployed WIMs and VIMs. 
Based on the interpretation of the provided slice intent, the required network management 
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mechanisms are activated and dynamically managed. These actions are realized in an agnostic 
way to application service providers. However, through a set of open APIs, requests for 
adaptation of the network slice configuration may be provided by the Vertical Applications 
Orchestrator to the Network and Computing Slice Deployment Platform. 

3 MATILDA Reference Architecture 

3.1 MATILDA Architectural Approach Overview 

The MATILDA reference architecture (Figure 2) is divided in three distinct layers, namely the 

5G-ready Applications Layer, the Applications’ Orchestration Layer and the Network and 

Computing Slice Management Layer. Separation of concerns per layer is a basic principle 

adhered towards the design of the overall architecture. The Applications Layer is oriented to 

software developers, the 5G-ready Application Orchestration Layer is oriented to 

application/service providers and the 5G Infrastructure Slicing and Management Layer is 

oriented to communication service/infrastructure providers. 

The 5G-ready Applications Layer takes into account the design and development of 5G-ready 

applications per industry vertical, along with the specification of the associated networking 

requirements. The associated networking requirements per vertical industry are tightly bound 

together with their respective 5G-ready applications’ graph, which defines the business 

functions, as well as the service qualities of the individual application. The main components 

developed in this layer regard the “Application Component” and “Application Graph” 

Repositories, the Programmable Infrastructure Registration Component, the Slice Intent Editor, 

the Runtime Policies Editor, the Application Graph Composer and the Profiler.  

The Applications’ Orchestration Layer supports the dynamic on-the-fly deployment and 

adaptation of the 5G-ready applications to its service requirements, by using a set of 

optimisation schemes and intelligent algorithms to provide the needed resources across the 

available multi-site programmable infrastructure. The main components developed in this 

layer regard the Deployment and Execution Manager, the Monitoring Engine, the Application 

Component Agent, the Runtime Policies Manager, the Service Discovery Mechanisms and the 

Data Analysis Mechanisms. 

The Programmable 5G Infrastructure Slicing and Management Layer is responsible for 

setting up and managing the 5G-ready application deployment and operation over an 

application-aware network slice. Network slice instantiation and management, network 

services and mechanisms activation and orchestration, as well as monitoring streams 

management, are realized. Such actions are triggered based on requests provided by the 

Applications’ Orchestration Layer through the specification of Open APIs. The main 

components developed in this layer regard the OSS/BSS, the NFV Orchestrator, the Wide-area 

Infrastructure Manager (WIM) and the Network Services Catalogue. 
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Figure 2: MATILDA Reference Architecture. 

3.2 MATILDA Integrated Framework Overview 

The aforementioned architectural approach has been adopted and instantiated in the 
development of the MATILDA integrated framework. This section shortly details the main 
integration points that have been implemented. These integration points regard a set of APIs 
supporting information exchange among the various components of the MATILDA architecture. 
The main supported interactions are as follows: 

- The 5G-ready Applications Layer is interconnected with the Applications’ Orchestration 
Layer for supporting onboarding of 5G-ready applications and application components 
to the MATILDA Vertical Application Orchestrator (VAO). Onboarding is realised by 
application developers that provide access to the developed software to application 
service providers. Upon the completion of the software development and validation 
processes, the developed software is made available into a set of Repositories and is 
accessible to a set of components within the VAO. Such components include the 
application graph composer and the policies editor. Furthermore, export of the 
composed application graphs in a YAML format is also supported, making the 
application descriptors accessible to application developers for further usage. 

- The Applications’ Orchestration Layer is interconnected with the Network and 
Computing Slice Management Layer for supporting interaction between telecom 
operators and application service providers during the application-aware network slice 
lifecycle management. The main interactions include the request for instantiation of an 
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application-aware network slice, the provision of information concerning the successful 
(or not) instantiation of the requested slice, and the provision of continuous network 
monitoring information related to QoS and QoE aspects.  

The main interactions are depicted in Figure 3: 

 

Figure 3: Main MATILDA Components Interactions. 

4 Cloud-native Applications Orchestration 

The main components constituting the MATILDA VAO are: (i) the deployment and execution 
manager that supports the production of optimal deployment plans as well as manages the 
overall execution of the application, (ii) a set of data monitoring mechanisms which collect 
feeds from network and application-level metrics, (iii) a data fusion, real-time profiling and 
analytics toolkit, that produces advanced insights through machine learning mechanisms and 
provide real-time profiling of the deployed components, application graphs and VNFs, (iv) 
service discovery mechanisms for supporting registration and consumption of application-
oriented services following a service mesh approach, (v) a context awareness engine in order 
to provide inference over the acquired data and support runtime policies enforcement, and (vi) 
mechanisms supporting interaction among the VAO and the OSS. 

4.1 Deployment and Execution Manager 

A core component of the orchestrator is the Deployment and Execution Manager, which is the 
component that is responsible to materialize a placement plan of a vertical application. Each 
vertical application consists of multiple components that formulate an application graph. The 
application graph and the components adhere to a specific metamodel [1-2]. A vertical 
application provider is introducing some constraints at the component/application level, which 
are submitted to the MATILDA-enabled telco provider through the Northbound API that is 
described in Section 4.7. The telco provider is interpreting the constraints to a constraint-
satisfaction problem. Upon the identification of a solution the telco provider is creating a slice 
which facilitates the requirements of the provider.  
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The slice per se is sent back to the orchestrator. The slice contains placement instructions, i.e. 
where each component should be placed. The deployment manager is responsible to trigger the 
VIMs that are included in the slice response. Beyond spawning the VMs the Deployment and 
Execution manager is responsible to monitor the proper instantiation of the vertical 
components within the VM. This is practically performed by a component that is addressed as 
MATILDA Agent and is loaded in each VM that is spawned within the telco provider. The Agent 
is responsible to report on the success boot sequence of the vertical components and even react 
on managed exceptions (e.g., VM is not available at the moment, component is loaded but health 
check is failing). 
Furthermore, part of the execution management business logic is the handling of the elasticity 
business logic. Elasticity is the trait of a system to self-expand or shrink based on the 
undertaken load. Elasticity is “technically interpreted” in a completely different way based on 
the nature of the vertical component. For example, a stateless http component can scale under 
two assumptions: a) there is a mechanism to spawn/destroy stateless workers based on the 
demand and b) there is a ‘central’ component that can split and redirect the traffic to the various 
workers (a.k.a. balancer). In a storage component the ‘high-level’ assumptions are the same but 
the mechanism-insights are completely different. There is the assumption that a mechanism 
will spawn/destroy storage elements but the balancing logic is completely different. 
We have introduced the ability to support, inherently, scalability of horizontally scalable 
components. To achieve so, Instead, the most elegant solution was to define an abstract API of 
an elasticity controller and alter the core orchestrator logic in order to dynamically interact 
with an instance of this controller (see Figure 4). In other words, the VAO’s core-orchestrator, 
besides the deployment and the checking of the application and component status, has also to 
manage the elasticity controller. To support the development of elasticity controllers for 
various components, we followed a Service-Provider-Interface adapter architecture  (a.k.a. SPI) 
and we decoupled the elasticity logic from both the VAO’s backend as also the core-
orchestrator, and thus introduced the elasticity-framework module-template. As we need also 
to let the developer implement their elasticity-adapters without the need to know the VAO’s 
architecture, we created some services and utilities that act as middleware between the adapter 
and the backend/core-orchestrator. 
 

 

Figure 4: Elasticity Controller interaction with core orchestrator 
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4.2 MATILDA Agent and Service Discovery Mechanisms 

The MATILDA Agent is one of the major artefacts of the first release. The main duty of the 
Agent is to handle the signalling (at layer 7) between the orchestrator and the core platform. 
However, the Agent supports also efficient security policy enforcement at the component level. 

As already mentioned, when a vertical application is deployed to a MATILDA enabled 
provider each component is associated with a VM and each VM is spawned simultaneously. The 
reason for that ‘parallel’ spawning is that the VM booting time is a significant portion of the total 
time that is required for a vertical component to be operational. Upon VM spawning there are 
7 discrete steps that have to be executed in order for the vertical component to be operational. 

 

Figure 5: Lifecycle of MATILDA Agent 

These steps are graphically depicted in Figure 5 and will be explained in detail: 

Step 1 – Agent booted: During this step the small-footprint Agent is loaded. That verifies 
that the VM boot process has completed successfully and the initialization script (init.d) that 
was passed as an argument from the Deployment Manager was valid. 

Step 2 – Check executable prerequisites: During this step the Agent tries to resolve if three 
prerequisite executables are already installed in the VM. These are a) the monitoring probe (i.e. 
Netdata), b) the Container Engine (i.e. docker-engine) and c) the Service Discovery Client (i.e. 
Consul). If these prerequisites are not met, the Agent terminates abnormally. If they are met, 
the component is registering to the SDS server. 

Step 3 – Fetch Image of Vertical Component: During this step the actual transfer of the 
executable of the vertical component is performed. In order to cope with the problem of vendor 
lock-in format of the executable the container format has been chosen.  

Step 4 – Block until dependencies are resolved: During this step the Agent is trying to 
identify what is the operational state of the vertical components that are direct dependencies 
to the component that is bound to the Agent. To do so, the Agent is not contacting other Agents 
directly because this would be inefficient and problematic. Instead, it queries the SDS server to 
fetch the latest state of each direct dependency. If the operational state of all dependencies is 
not satisfied, then the Agent blocks. 

Step 5 – Spawn container of Vertical Component: When all dependencies are operational, 
the Agent is triggering the execution of the pulled container.  

Step 6 – Register component to SDS when health-check passes: Upon triggering of the 
execution, the Agent is polling the service in order to infer whether or not the booted service is 
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actually running. If this ‘health-check’ is successful, then the Agent notifies the SDS that the 
component is up and running. 

Step 7 – Register to a pub/sub queue: During this step the Agent is polling a pub/sub 
system for specific commands that may be issued by the Deployment and Execution Manager.  
The commands that are rather crucial are the perimeter security commands that are 
implemented using the BPF technology. 

As is inferred from the steps above, the Service Discovery Server is a rather crucial 
component of the architecture, since it acts as a Key-Value store which is accessible by all 
Agents that are booted. In this store, all aspects regarding Agent arguments, vertical component 
dependencies and docker image location are provided.  

4.3 Monitoring Mechanisms 

The MATILDA monitoring solution addresses multi-site network infrastructure deployments 
and performs metrics acquisition from a variety of domains. Specifically, the resources to be 
monitored fall in one of the following domains: 

• NFV Infrastructure (NFVI) resources that comprise of physical and virtual compute, 
network and storage resources 

• SDN-enabled elements, including physical and virtual resources 

• Physical devices that do not belong to the previous categories, such as non-SDN 
compliant network routers and switches for which we want to capture monitoring 
information 

• Linux containers deployed to run application components that form the 5G-ready vertical 
applications. 

The monitoring system is responsible for the management of the metrics captured from the 
various infrastructure components, the management of alerts and events based on these 
metrics, and the visualization of the available data. The monitoring mechanisms can operate in 
passive or active manner. Passive monitoring in MATILDA refers to the capture of service and 
network metrics locally at the application or VNF component level. Example of such metrics are 
CPU utilization, RAM usage, etc. On the other hand, the active monitoring provides QoS/QoE 
measurements based on the injected traffic by the monitoring application itself. The simplest 
of such monitoring tools in MATILDA would be ICMP (Internet Control Message Protocol) PING 
request/reply mechanism that enables measuring the RTT (round-trip time) between 
application components or application component and UE. 

One of the major challenges was the unification of the monitoring streams that are 
generated from the operation of the various components/layers. In their final form, these 
metrics are categorized in the following groups: 

a) Infrastructure-benchmarking: Such metrics quantify the quality of the provided IaaS 
resources (from the telco-provider) during the slice creation. They refer to CPU speed, amount 
of memory, storage speed (IOs per second), etc. These measurements are performed by the 
VAO Agent prior to the deployment of a vertical component.  
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b) Probable-Vertical Component Runtime metrics: Such metrics quantify the several 
execution parameters that can be measured passively, i.e. through a probe. Such probes are 
installed and parameterized by the VAO Agent. 

c) Vertical Component Runtime exportable metrics: Such metrics quantify the several 
execution parameters that are exposed by the Vertical component per se. The export process 
must follow guidelines. To do so, exporter libraries for Java and Python have been developed in 
order for developers to be able to follow the norms. 

d) Communication Service Provider Metrics: These are metrics that are measured within 
the administrative zone of the OSS and they are performed by specific VNFs that are 
dynamically deployed. 

Implementation of the overall monitoring solutions is based on the deployment of 
Prometheus instances, able to aggregate data coming from various agents. Part of these agents 
are based on the QMON monitoring platform for QoS/QoE metrics as well as Netdata for 
VM/container-based metrics. 

4.4 Data Analytics Toolkit 

The design and implementation of the toolkit took place focusing on supporting: 

• The ease of integration of analysis processes/scripts by data scientists independently of 
the programming language used. 

• The ease of selection of monitoring metrics (resource usage, orchestration, application 
component specific metrics) and the fetching of the required time-series data from the 
Monitoring Engine in order to realise analysis over them. 

• The production of analysis results in the form of URLs that can be easily viewed and 
compared by the interested parties (e.g. data scientists, network administrators) 

• The design and implementation of a set of APIs for supporting the registration and 
execution of analysis processes. 

A set of analysis processes/scripts have been integrated, including: 

Correlation 
Analysis: 
identify strong 
correlations, 
relations and trends 
among 
infrastructure-
oriented and 
application 
component-specific 
metrics, leading to 
insights that can be 
used for runtime 
policy definition and 
proactive decision 
making by the 
various orchestration 

 

Figure 6: Indicative screenshot (correlogram) from a correlation analysis 
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mechanisms. Two 
types of diagrams are 
produced: a 
correlogram in the 
form of a table as 
well as a Chord 
diagram providing 
the most significant 
correlations per 
metric. 

 

Figure 7: Indicative screenshot (chord diagram) from a correlation analysis 

Time Series 
Decomposition and 
Forecasting: 
identify trends and 
provide accurate 
forecasting models, 
forecast resource 
demanding periods 
and scale proactively 
the deployed 
functions to 
optimally serve the 
workload. 

 

Figure 8: Indicative screenshot from a time series decomposition analysis 

Resource Efficiency 
Analysis: 
identify resource 
consumption trends 
and capacity limits, 
used for planning 
accordingly optimal 
reservation of 
resources.  

 

Figure 9: Indicative screenshot from a linear regression analysis 

Clustering: 
identify clusters 
based on time series 
data from multiple 
metrics, leading to 
identification of 
groups of metrics 
with similar 
behaviour. Upon the 
clustering analysis, 
identification of the 
boundaries of 
elasticity rules’ 
triggering based on 
the component 

 

Figure 10: Indicative screenshot from a clustering analysis 
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operation is also 
realised. 
Filter healthy 
metrics: 
check the quality of 
the collected time 
series data and 
provide indication 
about the percentage 
of the qualitative 
time-series data 
(e.g., no many empty 
values) 

The outcome of this analysis is a short text description with the 
percentage of the monitoring metrics that provide qualitative time-
series data. 

 

The overall architectural approach of the analytics toolkit is depicted in Figure 11. Access to 
the supported algorithms (analysis scripts) is provided through APIs provided by a developed 
Proxy. The Proxy is based on the OpenCPU framework in case of R analysis scripts or the Flask 
framework in case of Python analysis scripts. Following, analysis templates can be designed 
and introduced in the Orchestrator Dashboard for supporting specific analysis processes. Based 
on the templates, analysis processes can be initiated, where configuration parameters and start 
and end time for the analysis data are provided. The related time series data is fetched by the 
monitoring engine and led as input in the analysis process. The analysis is then executed and 
the analysis results are made available in the form of reports in the dashboard. It should be also 
noted that interconnection with workload generators is supported over the deployed 
application graphs, enabling the stress testing of the deployed graphs and the collection of 
valuable monitoring data for the analysis processes. 

 
Figure 11: Analytics toolkit architectural approach 

4.5 Runtime Policies Enforcement 

The Policies Manager in MATILDA provides policies enforcement over the deployed 
application graphs following a continuous match-resolve-act approach. Specifically, the match 



 

Page 14 of 20 

 

 

MATILDA whitepaper 

 

phase regards the mapping of the set of applied rules that are satisfied based on the alerts 
coming from the monitoring infrastructure. The resolve phase regards the process of conflict 
resolution for different rules that may be valid and triggered at the same time. Thus, the resolve 
phase aims at resolution among these rules taking into account the pre-defined salience of each 
rule. The act phase regards the provision of a set of suggested actions by the policy manager to 
the orchestration components, the Deployment Manager and the Execution Manager of the 
MATILDA orchestrator, responsible for application graphs placement and management, 
respectively. Policies enforcement is realized through a rule-based framework that attempts to 
derive execution instructions based on the current set of data and the active rules; rules 
associated with the deployed application graphs at each point of time. Specifically, we have 
adopted Drools rules-based management system [Drools], an open-source solution that 
supports the implementation of runtime policies enforcement mechanisms. 

Specifically, the Policy manager (following a Drools approach) consists of (i) the working 
memory (WM); facts based on the provided data, (ii) the production memory (PM); set of 
defined rules, and (iii) an inference engine (IE) that supports reasoning and conflict resolution 
over the provided set of facts and rules, as well as triggering of the appropriate actions. Data is 
fed to the WM through the monitoring mechanisms that is responsible to collect data based on 
a set of active monitoring probes. The PM is also fed by policies associated with the deployed 
application graphs, as provided through the Policies Editor - the editor made available to 
service providers for policies definition. 

Data monitoring and management processes are supported through a set of passive 
monitoring probes by the Prometheus monitoring engine. Collection and consumption of 
information is based on the configuration of a Publish/Subscribe framework -namely the Kafka 
framework-, where set of components, resource usage and application graph metrics are 
provided based on application graph-oriented topics. Policy manager dynamically handles and 
converts the collected data to WM facts. Such facts can then be matched with already defined 
rules on the active policies. Definition of rules per policy is supported through the Policy Editor 
in a per application graph basis, based on the concepts represented in the MATILDA metamodel. 
An application graph may be associated with a set of policies; however, only one can be active 
during its deployment and execution time. Each policy consists of a set of rules. Each rule 
consists of the conditions part - denoting a set of conditions to be met- and the actions part -
denoting actions upon the fulfilment of the conditions. The defined policies are translated to a 
set of rules that become part of the Policy Manager. Expressions may regard custom metrics of 
an application graph or a component/microservice. Detailed description of the policies 
metamodel and the supported types of conditions and actions is provided at [4]. 

Each rule has attached a specific salience that is used as a priority indicator during conflict 
resolution by the IE. A time window can be optionally specified per rule for the validation of the 
successful enforcement of the proposed actions. When attaching a specific runtime policy to an 
instantiated application graph, the specified set of policy rules are deployed to the policy 
manager PM, while the WM agent is constantly feeding the WM with new facts. 

The high-level interaction between the Policy Manager and the Monitoring mechanisms is 
depicted in Figure 12. Upon the instantiation of a 5G-ready application graph and the 
enforcement of a policy, a set of monitoring metrics are collected and processed according to a 
set of expressions defined in the policies. The metrics and the corresponding expressions may 
regard application-component-specific metrics, application-graph-specific metrics or 
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resources usage metrics. Processing of the collected data is realised within the Monitoring 
mechanisms (Prometheus), leading to the triggering of alerts that leads to the publishing to the 
Message Broker (Kafka) at a monitoring topic. Such alerts are consumed by the Policy Manager 
(Drools based implementation) for realising inference over the defined set of rules. The 
suggested actions from the inference results are then published to the Message Broker at a 
relevant topic in order to be consumed by orchestration mechanisms. 

 

Figure 12: Policy Manager and Monitoring Mechanisms Interaction 

In order to overcome potential computational problems, a distributed implementation of the 
policy manager has been realised, in addition to the previous monolithic approach. In the new 
version, horizontal scalability of the policy manager is supported, as shown in Figure 13. 

 

Figure 13: Horizontally Scalable Policy Manager Design 

At the new approach, the consistent hashing technique is being used so as to obtain the 
optimal creation of the application-based policies and the optimal consumption of the 
monitoring messages delivered via the pub/sub framework. In more detail, thanks to the use of 
the consistent hashing technique, the messages targeted to the same application graph are 
always routed at the same queue, leading to the minimum set of exchangeable messages 
between the broker and the policy manager. This approach has as a result the relief of any 
possible computational problems, in case of a large number of operational policies that 
consume constantly messages from the pub/sub framework and generate elasticity actions. 
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4.6 Complex Event Processing 

The Complex Event Processing mechanism of the MATILDA Intelligent Orchestrator suggests 
a dynamic engine that, enriched with Machine Learning techniques can be fully adaptive to its 
environment.  As presented in Figure 14, the engine is divided in two major components, 
namely the Complex Event Processing engine and the Threshold identifier, which are described 
in more detail below.  

 

 

Figure 14: Dynamic Complex Event Processing mechanism – Overall architecture 

The Complex Event Processing engine regards a Drools Fusion engine, whose job is to trigger 
the rules from the Knowledge Base when a condition is met. These rules are created in the first 
place by a Domain expert or a Service provider.  

The Complex Event Processing engine, as is, regards a typical engine without any level of 
intelligence. For this reason, the Threshold identifier service is developed, whose purpose is to 
identify in real-time the behaviour of the deployed services and update the Knowledge Base 
(i.e. the rules) in order for the CEP engine to act accordingly. Under the hood, the Threshold 
identifier regards an Incremental Learning algorithm specifically developed for the purposes 
of the MATILDA project. In more detail, an Incremental DBSCAN reference implementation is 
developed that identifies which is the normal behaviour of the service based on the monitoring 
metrics.  

The process of the identification of the behaviour of the deployed services starts with the 
collection of a dataset of historical monitoring data that are fed to a batch DBSCAN algorithm in 
order to create the first clusters that represent the usage of the service.  
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At runtime the monitoring data are provided to the Incremental DBSCAN algorithm that, 
based on the outcomes of the batch algorithm, decides whether it should be added in an already 
existing cluster, considered as an outlier, or to create a new cluster with other outliers. In any 
case the outcomes are taken under consideration the next time a new data is inserted, 
something that we could not achieve using only the batch implementation of the DBSCAN.  

As already mentioned, the clusters represent the behaviour of the deployed service. We use 
that information to make the CEP engine more adaptable to its environment, using a simple, yet 
effective methodology. The cluster with the most elements constituting it represents the 
normal behaviour of the service. We take the limits of the cluster and based on them we adjust 
the rules in the Knowledge Base. This leads to a more context aware solution that can identify 
the changes of its environment faster and adapt without the need of external assistance.  

The use of Incremental DBSCAN over the batch DBSCAN approach is preferred in order to 
avoid the time-consuming process of re-training of the algorithm. In addition, using the 
incremental approach of DBSCAN the newly incoming data is taken under consideration 
instantly and the decisions made are up-to-date.  

4.7 Northbound APIs for Communication Service Providers 

Northbound APIs are provided by the Operations Support System (OSS) towards the VAO. 
OSS is a web application, which offers a user interface along with a RESTful API that is used by 
the Orchestrator. Two interfaces have been specified and partially implemented for supporting 
the Northbound APIs: 

• Interface for accepting a Slice Intent from the Orchestrator. It asks the telco provider to 
materialize a Slice given a specific Application Graph Instance and a set of constraints. 
The response pattern of this interface is asynchronous (see serialisation format in Table 
1). 

• Interface for informing the Orchestrator if a Slice can be materialized or not in order to 
start the deployment of the specific Application Graph Instance. The response pattern of 
this interface is synchronous (see serialisation format in Table 2). 

Table 1: Indicative Slice Intent serialized in JSON Format 

{ 
 "applicationInstanceID": "580", 
 "name": "OSSScenario", 
 "callbackURL": "http://localhost:8080/api/v1/callback/slice/580", 
 "authenticationDetails": { 
  "clientToken": "!telcoprovider!", 
  "clientKey": "telcoprovider" 
 }, 
 "componentNodeInstances": [{ 
  "componentNodeInstanceID": "581", 
  "componentNodeInstanceName": "TestCaseMariaDB" 
 }, { 
  "componentNodeInstanceID": "587", 
  "componentNodeInstanceName": "TestCasePhpMyAdmin" 
 }], 
 "constraints": [{ 
  "constraintID": "591", 
  "interfaceInstanceID": "590", 
  "qi": "10", 
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  "radioServiceType": "1", 
  "resourceType": "DELAY_CRITICAL_GBR", 
  "allocationRetentionPriorityProfile": 1, 
  "minimumGuaranteedBandwidth": 120.0, 
  "maximumRequiredBandwidth": 200.0, 
  "constraintUnit": "kbps", 
  "category": "ACCESS", 
  "type": "HARD" 
 }, { 
  "constraintID": "592", 
  "graphLinkNodeID": "544", 
  "constraintMetric": "DELAY", 
  "constraintUnit": "ms", 
  "constraintValue": "100.0", 
  "category": "GRAPH_LINK", 
  "type": "HARD" 
 }, { 
  "constraintID": "593", 
  "componentNodeInstanceID": "587", 
  "constraintMetric": "MIN_V_CPU", 
  "constraintUnit": "amount", 
  "constraintValue": "4.0", 
  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }, { 
  "constraintID": "594", 
  "componentNodeInstanceID": "587", 
  "constraintMetric": "MIN_RAM", 
  "constraintUnit": "gb", 
  "constraintValue": "16.0", 
  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }, { 
  "constraintID": "595", 
  "componentNodeInstanceID": "587", 
  "constraintMetric": "MIN_STORAGE", 
  "constraintUnit": "gb", 
  "constraintValue": "10.0", 
  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }, { 
  "constraintID": "596", 
  "componentNodeInstanceID": "581", 
  "constraintMetric": "MIN_V_CPU", 
  "constraintUnit": "amount", 
  "constraintValue": "4.0", 
  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }, { 
  "constraintID": "597", 
  "componentNodeInstanceID": "581", 
  "constraintMetric": "MIN_RAM", 
  "constraintUnit": "gb", 
  "constraintValue": "10.0", 
  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }, { 
  "constraintID": "598", 
  "componentNodeInstanceID": "581", 
  "constraintMetric": "MIN_STORAGE", 
  "constraintUnit": "gb", 
  "constraintValue": "16.0", 
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  "category": "COMPONENT_HOSTING", 
  "type": "HARD" 
 }], 
 "graphLinkNodes": [{ 
  "graphLinkNodeID": "544", 
  "fromComponentNodeInstanceID": "587", 
  "toComponentNodeInstanceID": "581", 
  "type": "CORE" 
 }], 
 "dateCreated": "Jun 13, 2018 12:51:38 PM" 
} 

Table 2: Indicative Slice serialized in JSON Format 

{ 
 "applicationInstanceID": "580", 
 "vimDescriptors": [{ 
  "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257", 
  "domain": "default", 
  "project": "maestro", 
  "username": "maestro", 
  "password": "!maestro!", 
  "endpoint": "http://192.168.3.253:5000/v3/" 
 }], 
 "componentPlacements": [{ 
  "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257", 
  "componentNodeInstanceID": "581", 
  "attachmentPoints": [{ 
   "graphLinkNodeID": "544", 
   "attachmentPointIdentifier": "6763cfb6-d7ab-43d1-bfac-c997b4685ad2" 
  }] 
 }, { 
  "vimID": "a4ab0bf9-188f-40da-8624-2f4a879f2257", 
  "componentNodeInstanceID": "587", 
  "attachmentPoints": [{ 
   "graphLinkNodeID": "544", 
   "attachmentPointIdentifier": "b66b6a90-c550-413b-b484-961ad339b2bd" 
  }] 
 }], 
 "constraintSatisfactions": [{ 
  "constraintID": "591", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "592", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "593", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "594", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "595", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "596", 
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  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "597", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }, { 
  "constraintID": "598", 
  "satisfied": true, 
  "constraintType": "HARD" 
 }], 
 "dateCreated": "Jun 13, 2018 12:51:49 PM" 
} 

5 Conclusions 

In the current manuscript, we have provided a short overview of the MATILDA architectural 
approach, followed by a detailed description of the components and functionalities provided by 
the Vertical Applications Orchestrator (VAO). Focus is given on the presentation of the VAO 
components, their role in the overall architectural approach and the technological choices made 
for their design and development. The set of components are fully extensible and can be evolved 
considering evolving technologies in the area of orchestration of cloud-native applications and 
the need for development of interfaces for interaction with telecom operators. 
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