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Coalitional Game for the Creation of Efficient
Virtual Core Network Slices in 5G Mobile Systems

Miloud Bagaa, Tarik Taleb, Abdelquoddouss Laghrissi, Adlen Ksentini, and Hannu Flinck

Abstract—Many ongoing research activities relevant to 5G
mobile systems concern the virtualization of the mobile core
network, including the Evolved Packet Core (EPC) elements, aim-
ing for system scalability, elasticity, flexibility, and cost-efficiency.
Virtual EPC (vEPC)/5G Core will principally rely on some key
technologies such as Network Function Virtualization (NFV),
Software Defined Networking (SDN) and Cloud Computing; en-
abling the concept of Mobile Carrier Cloud. The key idea beneath
this concept, known also as Core Network as a Service (CNaaS),
consists in deploying virtual instances (i.e., Virtual Machines or
containers) of key core network functions (i.e., Virtual Network
Functions - VNF of 4G or 5G) such as the Mobility Management
Entity (MME), Serving GateWay (SGW), Packet Data network
gateWay (PGW), Access and Mobility Management Function
(AMF), Session Management Function (SMF), Authentication
Server Function (AUSF), and User Plane Functions (UPF) over
a federated cloud. In this vein, an efficient VNF placement
algorithm is highly needed to sustain Quality of Service (QoS)
while reducing the deployment cost. Our contribution in this
paper is two fold. First, we devise an algorithm that derives the
optimal number of virtual instances of 4G (MME, SGW, PGW)
or 5G (AMF, SMF and AUSF) core network elements to meet
the requirements of a specific mobile traffic. Second, we propose
an algorithm for the placement of these virtual instances over
a federated cloud. While the first algorithm is based on Mixed
Integer Linear Programming (MILP), the second is based on
Coalition formation game, wherein the aim is to build coalitions
of Cloud Networks (CN s) to host the virtual instances of the
vEPC/5G Core elements. The obtained results clearly indicate
the advantages of the proposed algorithms in ensuring QoS given
a fixed cost for vEPC/5G Core deployment, while maximizing the
profits of cloud operators.

Index Terms—5G, Core Network, Network Slicing, Evolved
Packet Core (EPC), VNF placement, Network Function Vir-
tualization (NFV), Management and Orchestration (MANO),
Coalitional Game, and Game Theory.

I. INTRODUCTION

Network Function Virtualization (NFV) represents one of
the key enablers of the next generation mobile network sys-
tems (5G). NFV allows running Virtual Network Functions
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(VNF) as software components on top of a virtualization
system (i.e., Virtual Machines - VMs - or Containers) hosted
in a cloud; allowing high flexibility and elasticity to deploy
network services and functions. Using NFV, different mobile
network components will be virtualized and that is spanning
the Radio Access Network (RAN) and the core network (e.g.,
Evolved Packet Core – EPC – in case of 4G mobile system)
[1]. RAN components will be divided into Base Band Unit
(BBU) and Remote Radio Head (RRH), whereby BBU is
run as a software and RRH will be kept deployed in the
field. 5G RAN is going further by splitting the BBU into
two entities, namely Central Unit (CU) and Distributed Unit
(DU); CU hosts time tolerant RAN functions, while DU hosts
time critical functions, such as MAC and part of the physical
functions. On the other hand, EPC components (i.e., Mobility
Management Entity - MME, Home Subscriber Sub-system
- HSS, Serving Gateway - SGW, and Packet Data Network
Gateway - PGW) will be fully virtualized and hosted in
federated cloud; building the concept of Mobile Carrier Cloud
[2]. The same applies for the main components of the 5G
Core, such as the Access and Mobility Management Function
(AMF), Session Management Function (SMF), Authentication
Server Function (AUSF), and User Plane Functions (UPF).
The virtual instances of these components will then constitute
the virtual EPC/5G Core.

To structure R&D activities around NFV, ETSI [3] and
3GPP [4] have launched standardization activities on NFV,
which has defined a global architecture to ensure orchestration
and management of services. The proposed architectures [3],
[4] define modules and interfaces that ensure the life-cycle
management of a service; from definition, composition to
deployment in the cloud infrastructure. In the envisioned
architectures, vEPC/5G Core will represent nothing but a
simple mobile service. In this case, the mobile network op-
erator communicates its needs, in terms of traffic patterns to
handle, location to cover, etc., to the NFVO (NFV orches-
trator) (resp., Network Slice Management Function (NSMF))
through dedicated northbound interfaces (e.g. REST API).
The NFVO/NSMF translates these needs into a number of
software instances (i.e. number of VMs hosting AMF, PCF and
UPF), which should be deployed in the network. To calculate
the number of virtual instances needed and their placement
over the federated cloud, the NFVO/NSMF has to rely on
VNF placement algorithms that output a Service Instance
Graph (SIG), which is a meta-data file that indicates how
the VM instances should be interconnected and where they
should run. Then, the NFVO/NSMF gathers the VM image
from a software catalog, which stores all software images of
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AMF, PCF, MME and HSS, and then enforces the SIG in the
federated cloud using a Network Slice Subnet Management
Function (NSSMF) and Virtual Infrastructure Manager (VIM).
Whilst many solutions are currently available for the NFVO
[5], VIM [6] and VNF Manager (VNFM) [7], decisions on the
optimal number of VM instances needed and their placement
over the federated cloud are still overlooked.

In this paper, we fill this gap by proposing a novel solution
that addresses both the optimal number of VM instances
to instantiate and their placement over a federated cloud
to create a vEPC/5G Core1 for a specific traffic pattern.
Let ϑ denote a VNF, whereby a set of different ϑs would
compose the vEPC/5G Core instance. Formally, ϑ can be
one of the following network elements: HSS, MME, SGW,
PGW, AMF, SMF, AUSF, and UPF. Obviously, the proposed
solution consists of two main parts. The first part derives
the optimal number of VM instances of each VNF ϑ (i.e.
HSS, MME, SGW and PGW), to handle a target traffic of
mobile users. In this part, the problem is formulated using
Mixed Integer Linear Program (ILP). The second part consists
in placing the instantiated VNFs in the federated cloud, i.e.
indicating on which cloud network CN a VNF should run.
Here, we formulate the problem using Game Theory, and
specifically Coalition Formation Game. Unlike the existing
solutions, which assume that CN s belong to the same cloud
operator, in this work we relax this constraint by allowing that
CN s could belong to different cloud providers. The proposed
placement algorithm considers the different CN s as players
and assumes that it is better for them to cooperate by building
coalition rather than not cooperate. Indeed, a CN would decide
to participate in a coalition (i.e., the creation of a set of
instances of a VNF ϑ) only if its profit is improved. The
profit of a CN refers to the difference between the price that
the mobile operator is willing to pay and the cost needed
to handle the traffic generated from different Tracking Areas
(TAs) associated to this CN . Note that the mentioned cost
may include the one incurred by resources dedicated to a VM
(i.e., CPU and storage) and the management of VMs (i.e.,
migration). Indeed, migrating a VM from a CN to another, in
order to free space to host new VMs, could represent high cost.
Therefore, it is better for a CN to participate to a coalition
and host part of the VNF, instead of hosting all the instances
of VNFs ϑ but with low profit. Moreover, in this game, for
each VNF (e.g., MME or SGW and PGW), CN s are selfish
and work to maximize only their individual profits without
looking into the profit of the other CN s.

The remainder of this paper is organized in the following
fashion. Section II presents some related research work. The
network model and problem formulation are covered in Sec-
tion III. The proposed VNF placement strategy is introduced
in Sections IV and V. Section VI evaluates the performance of
the different optimization solutions envisioned in this paper.
The paper concludes in Section VII.

1It shall be noted that whilst the focus, throughout this paper, is on virtual
EPC or EPCaaS (i.e., EPC VNFs), the proposed solutions are also applicable
to the case of 5G core network functions.

II. RELATED WORK

The concept of carrier cloud (i.e., vEPC) assists in achieving
elasticity, flexibility, and significant reduction in the opera-
tional cost of the overall system. Indeed, using NFV and
general-purpose hardware in CN s to run network functions
helps in dynamically scaling up/down the network according
to the demands of users for resources and can largely reduce
the cost. NFV aims at offering diverse network services using
network functions implemented in the format of a software,
deployable in an on-demand and elastic manner on the cloud.
In return of its numerous advantages, virtualizing EPC and 5G
Core network functions introduces some important challenges,
mainly related to the placement of the telco-specific VNFs (i.e.
MME, PGW, SGW, SMF, and AUSF) over a federated cloud
to ensure optimal connectivity for users and simultaneously
reduce the deployment cost.

The problem of VNF placement is similar, in a sense, to the
VM placement in the cloud. With regard to the latter, a large
library of research work has been conducted for the placement
of VMs (not necessarily hosting a VNF) in the same CN or
across multiple CN s (i.e. federated Cloud). These research
work tackle the problem from different angles, considering
specific criteria and constraints related to cost, availability,
and performance, which pertain to both the network and the
cloud infrastructure. For instance, the research work in [8]
proposes an approach for VM placement and migration to
minimize the time consumed in data transfers. The authors in
[9] focus on mapping VMs to physical servers with the aim of
improving server resource (e.g., CPU or memory) utilization,
overcoming the lack of space in CN s and maximizing the
number of mapped VMs in one physical host. In [10], per-
formance isolation (e.g., CPU, memory, storage, and network
bandwidth), resource contention properties (among VMs on
the same physical host), and VMs behavioral usage patterns
are taken into account in decisions on VM placement, VM
migration, and cloud resource allocations. Usually, a CN may
start with an initial configuration and then apply adequate
solutions to make a series of live migrations to transit the
CN from a sub-optimal state to an optimal one, similar in
fashion to solving an iterative rearrangement problem. For
this purpose, different algorithms can be used, such as N-
dimensional set or bin packing [11], the simulated annealing
algorithms [12], and ant colony optimization [13]. In other
research work, optimal placement of VMs, running specific
services, on physical machines, consider electricity-related
cost as well as transient cooling effects [14]. Other research
work do autonomic placement of VMs as per policies specific
by the CN providers and/or users [15]. Other VM placement
strategies consider maximizing the profit under a particular
service level agreement (SLA) and a predetermined power
budget [16]. Authors in [17] proposed a solution for solving
the problem of cloud federation formation. This solution aims
to increase the benefit for different clouds by sharing the
resources among them. Similarly to [17], authors in [18]
proposed a solution for cloud federation formation that uses
coalitional game. This solution explores the strength of cloud
federation for ensuring the services availability, responding to
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Fig. 1. NFV-based vEPC/5G Core service instantiation.

different users’ requests. A solution that creates federations
among a set of cloud providers is proposed in [19]. This
solution aims to reduce the energy cost when forming a
federated cloud. A cooperative game approach is used in that
solution allowing different cloud providers to negotiate the
resources in a distributed fashion.

More recently, new research work has emerged, proposing
algorithms for the placement of vEPC’s/5G Core’s VNFs.
In [20], the authors proposed a VNF placement method,
particularly for placing mobility-anchor gateways (i.e. SGW)
over a federated cloud so that the frequency of SGW relocation
occurrences is minimized. The aim of this work was to conduct
an efficient planning of Service Areas (SAs) retrieving a trade-
off between minimizing the UE handoff between SAs, and
minimizing the number of created instances of the virtual
SGWs. In [21], the focus was on VNF placement and in-
stantiation of another mobile network functionality, namely
data anchoring gateway or PGW. The work argued the need
for adopting application type and service requirements as
metrics for (i) creating VNF instances of PGWs and (ii)
selecting adequate virtual PGWs for UEs receiving specific
application types. The placement of PGW VNFs was modeled
through a nonlinear optimization problem whose solution is
NP-hard. Three heuristics were then proposed to deal with this
limitation. In [22], the authors proposed a framework, dubbed
softEPC, for flexible and dynamic instantiation of VNFs where
most appropriate and as per the actual traffic demand. The
proposed scheme addresses load-aware dynamic placement of
SGW/PGW over the underlying transport network topology
and as per the traffic demands. The results show that up to
25% of network resources can be saved with same network
topology and service points.

As aforementioned, different research work [17]–[19] aim to
share the resources among different cloud networks by forming
federated cloud. These solutions aim to ensure the stability of
the grand coalition, formed by different clouds. The aim of the

grand coalition is: i) to share the virtual resources (e.g., RAM,
virtual CPU, storage), and ii) to ensure the service availability
for responding to different users’ requests. In contrast to these
research works, the proposed solution, herein, aims to create an
EPCaaS slice on top of different CN s. The proposed solution
specifies the number and locations of different instances of
VNFs of virtual EPC, in each CN . Moreover, in contrast to
the literature, the proposed solution also specifies the flavor,
the amount of virtual resources (i.e, number of Virtual cores
- CPU, memory, storage) that should be dedicated for each
instance of each VNF ϑ, in a fashion that reduces the cost
while ensuring the QoS.

Unlike the cited research work [8]–[10], [14]–[22], which
tackle either the optimal number of VNFs or the VNF place-
ment, our proposed solution jointly addresses both issues in
the same time. Moreover, these research work assume that
CN s belong to the same cloud operator, which is relaxed
in our proposed solution (i.e., CN s may belong to different
cloud operators). To sum up, the proposed framework aims at
finding: i) the optimal number of VNFs to deploy (according
to mobile traffic); ii) the optimal placement of the determined
VNFs over the underlying federated cloud.

III. PROBLEM FORMULATION AND NETWORK MODEL

A. Problem formulation

3GPP [4] has defined a reference architecture for enabling
NFV orchestration and VNF management in an efficient
manner. A simplified view of the NFV architecture, featuring
EPCaaS and potentially virtual 5G core, is depicted in Fig.
1. In this figure, the NFV architecture consists of three main
parts: i) CN s whereby each CN is managed by a Virtual
Infrastructure Manager VIM (e.g., OpenStack), ii) Network
Slice Management Function (NSMF) and Network Slice Sub-
net Management Function (NSSMF) that are responsible for
managing, monitoring and orchestrating all VNFs in differ-
ent CN s, and iii) a Communication Service Management
Function (CSMF) that is responsible for: a) translating the
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Fig. 2. NFV-based vEPC service instantiation.

communication service related requirements into network slice
related requirements, and b) communication with NSFM.

For enabling the VIM functionality, CN s run different
virtualization technologies (e.g., KVM, XEN or Containers)
that allow the management of different virtual resources on top
of hardware resources (e.g., Compute, Storage, and Network).
VIM allows the instantiation of different Virtual Machines
(VMs) with different virtual resources using pre-stored VM
images. Different resources in a CN are defined through a
set of flavors LCN , whereby each flavor ` ∈ LCN represents
the amount of virtual resources (i.e., number of Virtual cores
- CPU, memory, and storage) that would be dedicated to a
specific VM in CN . The Service Instance Manager (SIM) en-
ables NSFM and NSSFM to orchestrate, monitor and manage
a set of VNFs that belong to different CN s. The description
and behaviors of different components are defined in the
Service Instance Descriptor (SID) that defines the Service
Instance Graph (SIG), presented through two catalogues: i)
VNF Catalogue, and ii) NFV Service Catalogue.

In this paper, we propose a virtual-EPC framework (i.e.,
easily extensible to cover the case of virtual 5G Core) that
explores the flexibility of the NFV architecture to build the
concept of EPCaaS over a federated cloud architecture. Our
proposed algorithms can be run by the NFV orchestrator to
find the number of VNFs and determine their placement over
the federated cloud; building the SIG to be enforced by the
VIM. The proposed VNF placement algorithm, in this paper,
is located in the Service Instance Descriptor, and can be called
by the CSMF using the operator inputs as entries. Note that
the SIG will be created using the two devised algorithms as
detailed in the following sections.

In this work, we consider that RAN consists of a number of
eNodeBs, organized in Tracking Areas (TAs), as per Release
8 of the 3GPP mobile network specifications. We also assume
that MME keeps record of the locations of UEs in idle mode
at the TA granularity [24], [25]. As per Release 8 and beyond
of the 3GPP mobile network specifications, S1-MME and S1-
U interfaces are changed by the S1-Flex interface that allows
each TA to be serviced by multiple MMEs and SGWs within
a pool area. The set of TAs, served by the same MME/SGW
node, forms an MME/SGW pool/service area, respectively.
Formally, a MME pool area is defined as a set of TAs where
a UE may be served without the need to change the serving
MME. MME pool areas may overlap with each other [27]. On

the other side, SGW service area is also defined as a set of TAs
where a UE does need to change its SGW while moving within
the same service area. SGW Service Areas (i.e., SA) may also
overlap with each other. Knowing that the traffic generated
by UEs (i.e., at both control and data plane levels) could be
aggregated at the TA level, the first part of the virtual-EPC
framework consists in devising algorithms that compute the
optimal number of instances to deploy for each VNF ϑ (i.e.
SSH, MME, SGW or PGW) to handle the expected mobile
traffic. In addition, the algorithms should associate each TA
with its respective MME/SGW pool.

TABLE I
NOTATIONS USED IN THE PAPER.

Notation Description
CN A Cloud Network.
Υ The set of events that can occur in a network.
Ω The set of all tracking areas.
Σ The set of all CN s in the network.
V The set of VNFs that would be deployed

to build a vEPC/5G Core. Formally, V =
{MME,HSS, SGW, PGW}.

ϑ ∈ V A VNF that would be deployed to build a vEPC/5G Core.
Formally, ϑ can be MME, HSS, SGW, or PGW.

T The time in discrete format, where each element t ∈ T
represents the occurrence time of one or multiple events.

ΓxA An array that shows the number of cumulative events
x ∈ Υ initiated from TA A during T . For each t ∈ T ,
ΓxA[t] represents the number of cumulative events x ∈ Υ
initiated from TA A during the time t.

ΦxA,B An array that shows the number of cumulative events
x ∈ Υ that would be removed if TAs A and B are
served by the same instance of VNF during T . For each
t ∈ T , ΦxA,B[t] represents the number of cumulative
events x ∈ Υ that would be removed if TAs A and B
are served by the same instance of VNF during the time
t.

λx,ϑ The amount of CPU and memory resources required to
handle one event of type x ∈ Υ by an instance of VNF
ϑ ∈ V .

LCN The set of flavors in CN .
MAXCN` The maximum CPU and memory resources that can be

offered by an instance of VNF with a flavor ` ∈ LCN .
τCN` The cost of one virtual instance of flavor type ` ∈ LCN .
Xδ,i A decision boolean variable that shows if a subset of TAs

δ ⊆ ω ⊆ Ω use the same instance i of a VNF ϑ.
Yi,` A decision boolean variable that shows if an instance i

of VNF ϑ uses the flavor ` ∈ LCN .
Zω,CN A decision boolean variable that shows if a subset of TAs

ω ⊆ Ω would be handled by a CN .

Fig. 2 illustrates the main overview of the envisioned EP-
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CaaS framework, dubbed virtual-EPC throughout this paper.
Fig. 2(a) depicts a network architecture that consists of: i)
three CN s managed by three different VIMs (i.e., Rackspace,
OpenStack and Amazon AWS); ii) a set of TAs that form
the RAN. As discussed above, virtual-EPC will instantiate
vEPC (i.e., alternatively virtual 5G Core in case of 5G core
network functions) that will manage and handle the traffic
generated by these TAs. As depicted in Fig. 2(b), virtual-
EPC will specify the number of instances of each VNF ϑ,
their flavors, as well as their locations in different CN s. In
this figure, we present only how to instantiate vEPC, however,
following the same fashion, the virtual 5G core network slice
can be also instantiated. Moreover, virtual-EPC will assign
for each TA the different instances of different VNFs ϑ that
are responsible for providing connectivity in that TA. As
mentioned before, virtual-EPC will create the SIG that will be
used by NFVO. The latter will communicate the appropriate
information in SIG to different VIMs, managing different
CN s, for instantiating the VNFs. In this figure, the square and
triangle shapes present HSS and MME, respectively. While
SGW and PGW are presented with a circle. Different colors
of the shapes besides TAs indicate the CN s, where these VNFs
are instantiated. Note that this picture is used to ease the
understanding of the idea behind our proposed virtual-EPC
framework. In real-life, one instance of a VNF may handle
multiple TAs.

B. Network model
TABLE II

AN EXAMPLE OF A SET OF EVENTS IN A LTE NETWORK.

Event Event description

Attach When a UE attaches to the network.
Detach When a UE detaches from the network.
PDN connection setup When a UE connects to a PDN network.
PDN disconnection When a UE disconnects from the network.
Handover When a UE moves between two neighboring

eNodeBs.
TA update When a UE enters into a new tracking area.

Such TA update can happen with or without
SGW relocation.

S1-Release Releasing S1 connection when a UE be-
comes inactive.

For every event in the network, such as the attach or
detach of a UE, a set of procedures should be executed. Each
procedure generates tens of messages exchanged among the
different network components. The different notations used
throughout the paper are summarized in Table I. We denote
by λx,ϑ the amount of resources in terms of CPU and memory
required by an instance of a VNF ϑ to handle an event x ∈ Υ.
Formally, λx,ϑ is defined as the amount of virtual resources
needed by ϑ to handle the number of messages generated due
to the event x. It is obvious that an event (e.g., S1-Release,
Tracking Area Update (TAU), and attach) does not necessary
have the same impact on a particular ϑ (MME, HSS, SGW or
PGW). Moreover, some events x ∈ Υ do not have any impact
on some ϑ. In this case, the value of λx,ϑ is simply set to
zero. For example, the event S1-Release does not have much
impact on HSS, and accordingly λS1-Release,HSS = 0. Table II

shows a list of some events (and their descriptions) that can
occur in vEPC/5G Core. For a specific event, not necessarily
all concerned VNFs would be involved. For example, in case
of TA update without SGW relocation, only the MME would
communicate with eNodeBs, informing the current SGW of
the target eNodeB but not involving a new SGW. Another
example is the X2-based handover: when a UE moves from
one eNodeB to another one, a set of messages would be
forwarded from these eNodeBs to MME. If these eNodeBs
are belonging to different SAs, SGW relocation would occur
involving a new SGW in the process to start the service area
(SA) relocation process.

We assume that each CN offers virtual resources with
a set of flavors LCN in terms of capacities. Each flavor
would be used as a model class to instantiate the different
VNFs. According to the required resources, CN would use
the appropriate flavors to increase QoS; its profits should be
increased while QoS and functionality of the system are not
impacted. According to the amount of resources dedicated
for every flavor, the instance of a VNF that uses it would
handle a specific rate of traffic (i.e., the amount of traffic per
second). The more resources used by that instance are, the
higher the traffic rate it can handle. We denote by MAX CN`
the maximum traffic rate that can be handled by an instance of
VNF with a flavor ` ∈ LCN . On the other hand, the cost of an
instance of VNF increases proportionally with the resources
used in its flavor. The more required resources in a flavor are,
the higher the cost of a VNF becomes. We assume that CN s
have different flavors with different costs. τCN` denotes the
cost of a flavor ` in a CN .

Before the execution of the proposed algorithm, the network
is observed for a specific learning period D, when information
about different events are gathered from the network. We
denote by Υ the set of events that occurred in the network
during the period D. To facilitate the management of our
system, we adopted a discrete event dynamic system (DEDS)
to observe the events during the period D. The time is counted
only for an event e ∈ Υ that has occurred in the network.
We denote by T the time in discrete format, where each
element t ∈ T represents the time corresponding to one or
multiple events. Ω denotes the set of TAs in the network.
Each TA A ∈ Ω is responsible for a set of events that would
be handled by vEPC/5G Core. The number of events of type
x ∈ Υ, generated from a TA A ∈ Ω until a specific time
t ∈ T , is denoted by ΓxA[t]. If a set of TAs is handled by
the same instances of a VNF, some events would be omitted.
For example, if TA A ∈ Ω and B ∈ Ω are handled by the
same instance of SGW, TA service request event would not
be generated, if a UE moves from A to B within Ω. ΦxA,B[t]
denotes the number of events of type x ∈ Υ, which would be
omitted, if TAs A,B ∈ Ω use the same instance of a VNF.

Each VNF in vEPC/5G Core ϑ ∈ V (e.g., SGW or MME)
has a specific role to accomplish. This means that two VNFs
with two different roles should not be considered as one VNF.
Moreover, the instantiation of an instance of a VNF does
not have any impact on the number of generated events on
another instance of another VNF. We model the instantiation
of different instances of each VNF ϑ ∈ V as a coalitional
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Algorithm 1 Algorithm of virtual-EPC
Input:

Υ: The set of events that can occur in the network.
Ω: The set of all tracking areas.
V: The set of VNFs type that would be deployed in vEPC.
Σ: The set of all data centers.

1: T = computeT ();
2: for all ϑ ∈ V do
3: for all (A, x) ∈ (Ω,Υ) do
4: Γx

A = computeΓ(ϑ, T ,A, x);
5: end for
6: for all ((A,B), x) ∈ (Ω2,Υ) and A 6= B do
7: Φx

A,B = computeΦ(ϑ, T ,A,A, x);
8: end for
9: Ξ = instanceVNF(ϑ,Γ,Φ);

10: bestCoalition(Ξ);
11: end for

game. The system model, adopted in this paper, considers
the problem whereby the CN s collaborate together to form
vEPC/5G Core, such that their profits are increased. The profit
of a CN , in this paper, refers to the difference between P – the
price that the operator is willing to pay – and the cost needed
to handle the traffic generated from different TAs associated
to this CN , in terms of CPU, storage, and VM management.
For the sake of simplicity and without loss of generality, we
assume that the price P can be split into multiple parts, where
each one would be used for deploying a VNF ϑ (i.e. HSS,
MME, SGW and PGW). Let Pϑ denote the price for deploying
a VNF ϑ. If the QoS required in vEPC/5G Core is not ensured,
no profit is gathered from holding different VNFs. We assume
that every CN is selfish and therefore will not host VNFs, if
it cannot make some profit.

Algorithm 1 illustrates the steps of the proposed framework.
Virtual-EPC starts by constructing T (Algorithm 1: Line 1).
Based on the above-mentioned remark, the instantiation of
VNFs with different roles can be done sequentially; one after
another. For this reason, virtual-EPC creates the different
VNFs of vEPC/5G Core one by one (Algorithm 1: Line 2).
For each VNF ϑ ∈ V , virtual-EPC creates all the required
instances in different CN s to handle the traffic generated
from different TAs. For every component and at each time
t ∈ T , virtual-EPC computes the cumulative number of events
generated from different TAs A ∈ Ω, which allocates the VNF
ϑ (Algorithm 1: Lines 3 − 5). Then, for every pair of TAs
A,B ∈ Ω and at each time t ∈ T , virtual-EPC also computes
the cumulative number of events that would be removed, if
they are handled by the same VNF (Algorithm 1: Lines 6−8).
Finally, a coalitional game is executed for every VNF ϑ to
create instances of ϑ in different CN s, such that the individual
profit of each CN in the coalition is maximized.

IV. VNF CREATION THROUGH COALITIONAL GAME

This section describes the procedure ”instanceVNF” to
instantiate the different instances of one VNF ϑ ∈ V (e.g.,
MME/SGW). We model this problem as a coalitional game,
whereby the different CN s are the players desiring to increase
their individual profits. We assume that each CN has enough

resources to accommodate the different instances needed by
vEPC/5G Core. We also assume that each instance has enough
resources allocated to it to handle the traffic generated from at
least one TA. In this section, we are interested in instantiating
virtual resources to accommodate the instances of one VNF
ϑ. According to the required resources, CN would use the
appropriate flavors to increase QoS; its profits should be
increased while ensuring that QoS and functionality of the
system are not impacted. According to the amount of resources
dedicated for every flavor, the instance of a VNF that uses that
flavor would handle a specific rate of traffic (i.e., the amount
of traffic per second).

For every VNF ϑ (i.e., SGW, PGW or MME), a set of CN s
(S) would participate in a coalition to host all the instances
of ϑ. Every cloud network CN i ∈ S will handle the traffic
caused by a set of TAs ωi ⊆ Ω. We define the handling of
TAs by a cloud network CN i ∈ S as a function H : Σ→ Ω,
where H(CN i) = {ωi}. The different centers agree to form a
coalition by ensuring the following two properties:

1) System functionality: Every TA would be associated with
at least one instance of the VNF ϑ; i.e. there should be
no TA A that does not have an instance of the VNF
ϑ. Formally, ∀A ∈ Ω =⇒ ∃CN ∈ S ∧ A ∈ H(CN ).
Also, the different CN s in a coalition S should not be
overloaded, especially during the peak hours, when the
majority of UEs are connected. This allocation of TAs to
CN s should not have any impact on QoS (i.e., reduce the
quality);

2) CN profit: H should be defined in a way that maximizes
the profits of the coalition members. In order to achieve
this objective, two functions are defined:

a) F(ϑ, CN , ω ⊆ Ω): A function defined as F : V ×Σ×
Ω → IR+, which returns the minimum cost to create
different instances of the VNF ϑ at CN , in order to
handle the traffic generated by a set of tracking areas
ω. This function ensures the use of optimal flavors LCN
to create different instances with minimum cost, while
equally ensuring the system functionality;

b) G(ϑ,S,Ω): A function defined as G : V×Σ×Ω→ IR+,
which returns the minimum possible cost to create dif-
ferent instances of the VNF ϑ in a coalition S to handle
the mobile traffic. Besides the optimal allocation of
different TAs to different CN s in the coalition, this
function guarantees the use of the optimal flavors in
each CN to create different instances of ϑ. The set
of all TAs Ω would be divided among the different
coalition members S. In order to increase the profit,
each TA should be associated with only one instance
of ϑ in a specific CN . Therefore, ∀CN i, CN j ∈
S ∧ CN i 6= CN j ⇒ H(CN i) ∩H(CN j) = ∅.

The following section presents the two optimization prob-
lems for F(ϑ, CN , ω ∈ Ω) and G(ϑ,S,Ω).
A. Optimal TAs’ cost within the same CN

In this subsection, we describe the function F(ϑ, CN , ω ⊆
Ω). The aim of this function is to increase the profit of
a CN (i.e., cloud provider), while guaranteeing the system
functionality (i.e. no QoS degradation). CN would reduce the
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number of instances of ϑ as much as possible to increase
its profit. In order to ensure the system functionality, the
generated traffic due to all the events Υ and handled by
an instance of ϑ should not exceed the instance capacity,
especially during the peak hours. Let δ ⊆ ω denote the set
of TAs handled by the same instance of ϑ m, which uses
flavor `. To guarantee that m is not overloaded, we need to
ensure that the resources required to handle the maximum
traffic rate generated due to Υ should not exceed MAX CN` .
Let ξδ denote the resources required to handle the maximum
traffic rate generated from δ. ξδ is expressed as follows:

ξδ = max
∀t1,t2∈T

[ ∑
∀x∈Υ

λx,ϑ ·
(( ∑
∀A∈δ

ΓxA[t2]− ΓxA[t1]

t2 − t1

)

−
( ∑
∀A,B∈δ,A6=B

ΦxA,B[t2]− ΦxA,B[t1]

t2 − t1

))] (1)

From Eq. (1), we obtain the required resources to handle the
maximum traffic rate within any interval [t1, t2] ∈ T . We are
interested in handling the active UEs’ requests simultaneously
without affecting the response time and preventing any Denial
of Service issue. For this reason, we take into account the rate

of each event, x ∈ Υ,
ΓxA[t2]− ΓxA[t1]

t2 − t1
instead of the amount

of events. In Eq. (1),
∑
∀x∈Υ

λx,ϑ ·
( ∑
∀A∈δ

ΓxA[t2]− ΓxA[t1]

t2 − t1

)
represents the sum of all events generated between t1 and t2,
scaled by the resources required by each event. As we have
mentioned before, if the traffic generated from a set of TAs is
handled by the same instance of a VNF, some events would be
omitted. ΦxA,B[t] denotes the number of events of type x ∈ Υ,
which would be omitted if TAs ∀A,B ∈ ω use the same
instance of a VNF. As all TAs δ would use the same instance
of a VNF, we have then to omit all resources required to handle
the events ΦxA,B[t],∀A,B ∈ δ ∧ A 6= B when computing ξδ .

Formally,
∑

∀A,B∈δ,A6=B
λx,ϑ ·

(
ΦxA,B[t2]− ΦxA,B[t1]

t2 − t1

)
denotes

the sum of events, which would be omitted between t1 and
t2, scaled by the resources required by each event.

Theorem 1. Achieving optimal profit through F is NP-hard
problem.

Proof. Let P1 denote the problem of creating a set of in-
stances of a VNF with different flavor types to achieve the
optimal profit for involved CN s. For the sake of simplicity
and without loss of generality, we assume that the events
would not be omitted, and each TA A ∈ ω requires an amount
of resources (i.e., its weight) denoted by ξA. Let ξω denote
(i.e., ω’s weight) the amount of resources required by all TAs
in ω. Formally, ξω =

∑
∀A∈ω

ξA. Let P2 denote the knapsack

problem, which is defined as follows: given a set of objects,
each of which has a weight and value, the problem consists in
determining the number of each item that should be put in the
knapsack so that the total weight does not exceed a specific
weight and the total value is maximized. The optimization of
knapsack problem is well known in the literature that it is NP-
hard problem. To prove that P1 is NP-hard, it is sufficient to
proof that the knapsack problem P2 would be reduced to P1
in a polynomial time. If P2 is reduced to P1 in a polynomial

time and P1 is not NP-hard, then P2 is also not NP-hard,
which is a contradiction. Let assume that P2 is formulated as
follows: the total weight that can be handled by the knapsack
is ξω and the set of items that should be put in knapsack is
the set of flavors LCN , such that the CN profit is maximized.
P2 can be reduced in a polynomial time to P1 by dividing
the knapsack into a set of TAs and then associating them with
different flavors.

As the maximization of the profit of a CN through F is
NP-hard, the optimal distribution of instances of a ϑ cannot
be achieved in a polynomial time. Heuristic or metaheuristic
algorithms can be used to find a sub-optimal solution. How-
ever, the values obtained from these algorithms can be far from
the optimal value, which can affect dramatically the benefits
of CN . Based on the observation that: i) the number of TAs
is limited and ii) the proposed vEPC/5G Core instantiation
algorithm would be executed only once in the initial step and
would be explored for a while; F is modeled using Mixed
Linear Integer Programming (MILP) to achieve an optimal
solution. A dedicated machine can be used to execute the
proposed vEPC/5G Core instantiation algorithm. Moreover,
the number of TAs is usually very limited; in the worst case
they are some dozens. In such scenario, the complexity of
the optimization is manageable, and the convergence to the
optimal solution would be within tolerable runtime delay. As
indicated in Table I, we define two variables: i) Xδ,i, which
is a decision boolean variable that shows if a subset of TAs
δ ⊆ ω ⊆ Ω uses the same instance of ϑ i; ii) Yi,` is a decision
boolean variable that shows if the instance of ϑ i uses the
flavor ` ∈ LCN .

Xδ,i =

{
1 If TAs in δ ∈ P(ω) use the same instance i of the VNF ϑ
0 Otherwise

Yi,` =

{
1 If the instance i of the VNF ϑ uses the flavor type `
0 Otherwise

Based on the assumption that each flavor is able to handle at
least the traffic generated by one TA, the number of instances
of the VNF ϑ that would be deployed in the network should
not exceed |ω|. The function F(ϑ, CN , ω ⊆ Ω) will be then
formulated as follows:

minF(ϑ, CN , ω ⊆ Ω) =

|ω|∑
i=1

∑
∀`∈LCN

τCN` · Yi,` (2)

S.t,

∀A ∈ ω :
∑

∀δ∈P(ω),A∈δ

|ω|∑
i=1

Xδ,i = 1 (3)

∀` ∈ LCN , ∀δ ∈ P(ω), i = 1 · · · |ω| :

ξδ · Xδ,i ≤MAXCN` · Yi,` (4)

∀δ ∈ P(ω), i = 1 · · · |ω| : Xδ,i ∈ {0, 1} (5)

∀` ∈ LCN , i = 1 · · · |ω| : Yi,` ∈ {0, 1} (6)

In this optimization problem, we aim at minimizing as much
as possible the cost spent by CN in order to increase its profit.
In Objective (2), we aim at using the minimum number of
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instances of ϑ, while selecting for those instances only the
flavors that reduce the cost. Note that in the objective, we can
have at most |ω| instances of ϑ in CN , where every instance of
the VNF ϑ serves only one TA. However, we may not need all
of them. If an instance of ϑ i is not needed, the optimization
problem ((2)–(6)) will set the variable Yi,` to 0, ∀` ∈ LCN .
Constraint (3) ensures the system functionality; Every TA A
should be handled by only one instance of ϑ. In (3), Xδ,i = 1,
if the power set δ ∈ P(ω) is handled by the instance of ϑ i.
In (3), we ensure that every TA A ∈ ω should belong to only
one δ ∈ P(ω), which is in turn handled only by one machine
i (Xδ,i = 1). Constraint (4) makes a relation between variables
Xδ,i and Yi,`. Moreover, it ensures that if a power set δ ∈ P(ω)
is selected (Xδ,i = 1), then the best flavor ` should be used
in its VNF. The flavor ` should have the lowest cost while
offering the required resources by δ. Formally, if Xδ,i = 0,
then Yi,` should be also equal to 0 in order to reduce the cost
(2). Meanwhile, Constraints (5) and (6) ensure that Xδ,i and
Yi,` are decision Boolean variables.

B. Optimal TAs’ cost within a coalition of CN s

In this subsection, we will show how to create a set of
instances of ϑ in a coalition of CN s to handle the set of
TAs in a cloud-based Evolved Universal Terrestrial Radio
Access Network - E-UTRAN, such that the total profit of CN s
is increased. The function G(ϑ, CN ,Ω) is defined herein to
achieve this objective. The aim of this function is to increase as
much as possible the total profit while the system functionality
is not affected. The system functionality is ensured in this
function through the use of function F .

The function G is modeled using Mixed Linear Integer Pro-
gramming (MILP). As stated before, the creation of vEPC/5G
Core would be done once and would be explored for a long
time. This makes the computational complexity of MILP
negligible compared to the profit which would be achieved.
On the other hand, the number of TAs in a RAN is very
limited. In such scenario, the complexity of the optimization
is manageable and the convergence to the optimal solution can
be within tolerable runtime delay. As we have mentioned in
Table I, we define the variable Zω,CN , which is a decision
Boolean variable that shows if a subset of TAs ω ⊆ Ω is
handled by a CN .

Zω,CN =

{
1 If a set of TAs ω ⊆ P(Ω) are handled by CN
0 Otherwise

The function G(ϑ,S,Ω) can be formulated as follows:

minG(ϑ,S,Ω) =
∑

∀ω∈P(Ω)

∑
∀CN∈S

F(CN , ω) · Zω,CN (7)

S.t,

∀A ∈ Ω :
∑

∀ω∈P(Ω),∀A∈ω

∑
∀CN∈S

Zω,CN = 1 (8)

∀CN ∈ S :
∑

∀ω∈P(Ω)

Zω,CN ≥ 1 (9)

∀ω ∈ P(Ω), ∀CN ∈ Σ : Zω,CN ∈ {0, 1} (10)

In this optimization problem, we aim to reduce the cost
incurred by a coalition S of CN s to handle all the TAs in the
RAN; leading to an increase in their profits. In the objective
(7), we aim to assign for every CN a set of TAs ω, such

that the total cost is reduced as much as possible. Constraint
(8) ensures the system functionality. We guarantee in this
constraint that every TA A should be handled by only one
CN . Meanwhile, Constraint (9) ensures that every CN in the
coalition should handle at least one power set ω from Ω. A
CN would not get a profit from S, if it does not handle a
set of TAs from Ω. Constraint (10) assures that Zω,CN is a
decision Boolean variable.

Theorem 2. Achieving optimal profit through G is also NP-
hard problem.

Proof. The function G calls iteratively the function F , which
is NP-hard problem. This makes the function G NP-hard
problem.

C. Coalitional game background

In this paper, we aim to build a vEPC/5G Core in the
carrier cloud that ensures the desired QoS. The aim herein
is to increase as much as possible the profit of the different
CN s involved in this operation. We define the characteristic
function of the coalitional game as follows:

v(S) =

{
0 If |S| = 0 or QoS is not ensured.
Pϑ − G(ϑ,S,Ω) Otherwise (11)

where Pϑ is the price for deploying VNF ϑ. The QoS is
ensured in S if the following condition is true:

∀CN ∈ S, ∀ω ∈ P(Ω) : Zω,CN = 1⇒ ∀A ∈ ω : θA,CN > θTh (12)

where θA,CN represents the data rate between TA A and
CN , and θTh is the minimum data rate threshold that should be
ensured by virtual-EPC solution. The objective of this paper is
to build the vEPC/5G Core in different CN s. Thus, for every
VNF ϑ, a coalition of CN s S would be determined, where
the different instances of ϑ would be built. Every CN ∈ Σ
wrestles to increase its profit by joining the coalition that
gives the highest profit value. Many ways are proposed in the
literature to share the profit v(S) among the different players
(CN ) in the same coalition S. The shapely value [29] is used
in the literature to fairly share the profit among the different
players. Another way to share the profit among players is
called nucleolus [29]. In nucleolus, instead of applying a
general axiomatization of fairness, the different coalitions are
arranged in a non-increasing order based on the players’
payoffs. This requires to look for every specific characteristic
function to maximize the profit of each player. However,
the use of these methods require many iterations for every
power set of the coalition. An easy way to share the profit
among different players is the use of equal sharing method.
Due to the simplicity of its implementation, this method is
widely used in the literature [29]. In this paper, we also use
the equal-sharing method to define the payoff of different
players in the coalition. However, any other method (i.e.,
shapely value or nucleolus) can be used in our framework with
slight modification. Based on the above-mentioned remark, the
payoff of each player CN in a coalition S is defined as follows:

ΠS(CN ) =
v(S)

|S|
(13)

Each CN aims to increase its payoff as much as possible,
and then it would decide to enter in a coalition S iff its payoff
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is maximized. Formally, a CN would participate in a coalition
S∗ that satisfies the following equation:

S∗ = argmax
∀S∈P(Σ)

ΠS(CN ) (14)

Based on (14), the different CN s would form different
coalitions, where the profit of each CN is maximized. The
profit of CN s in each coalition S would be maximized while
QoS is ensured. The different coalitions would be defined
through (14), and the two optimization problems ((2) - (6)) and
((7) - (10)). The set of all CN s Σ denotes the grand coalition.
The payoff vector of the grand coalition is defined as follows:
ΠΣ = (ΠΣ(CN 1), · · · ,ΠΣ(CN |Σ|)), where CN i ∈ Σ refers
to the ith CN in Σ. The vector payoff ΠΣ can be fairly divided
later among players according to the contribution of each one.
The stability of the coalition is the most renowned property of
the coalitional game, which refers to the situation that every
player does not have the intention to exit its coalition. In what
follows, we will define the imputation and the core that would
ensure the stability of the grand coalition Σ.

The imputation is defined through the following two prop-
erties. The first property is the coalitional rationality, which
means that the total amount received by the CN s in the grand
coalition should be equal to v(Σ).

Definition 1. According to the payoff vector in [30], ΠΣ is
coalitional rationality if

∑
CN∈Σ

ΠΣ(CN ) = v(Σ).

Based on (13), for any payoff vector in our game, this
condition is always verified for any coalition S including the
grand coalition Σ.

The second property is the individual rationality, which
means that no player would agree to receive a payoff in the
coalition less than the one that will receive by acting alone.

Definition 2. According to the payoff vector in [30], ΠΣ is
individual rationality if ∀CN ∈ Σ : v(CN ) ≤ ΠΣ(CN ).

Definition 3. According to the payoff vector in [30], ΠΣ is an
imputation iff it exhibits coalitional rationality and individual
rationality. Formally, the imputation is defined as follows:∑
CN∈Σ

ΠΣ(CN ) = v(Σ) and ∀CN ∈ Σ : v(CN ) ≤ ΠΣ(CN ).

To define the core, we need to define the unstable im-
putation. An imputation is unstable through a coalition S
iff

∑
CN∈S

ΠΣ(CN ) ≤ v(S). This means that there exists a

coalition S, where its players CN s will gain more if they
collaborate together than acting within the grand coalition Σ.

Definition 4. According to the payoff vector in [30], ΠΣ is
core iff it does not contain any unstable imputation. Formally,
the core is defined as follows:

∑
CN∈Σ

ΠΣ(CN ) = v(Σ) and

∀S ⊂ Σ : v(S) ≤ ∑
CN∈S

ΠΣ(CN ).

The core is the set of the payoff vectors that leads the
players to agree to form the grand coalition Σ. The core can
be composed by many points or can be empty. If the payoff of
the game is core, the players will then end up by forming the
grand coalition Σ. Otherwise, the grand coalition would not
be formed and the VNF ϑ would be created only using the
coalition of CN s that have the highest payoff value. In what

follows, we will present an example that shows an empty core
when forming vEPC/5G Core. We consider three CN s, dubbed
CN 1, CN 2 and CN 3, that compete to host the VNF ϑ. We also
consider that the RAN is formed with two TAs A and B. To
facilitate the explanation of the example, let v(CN , ω) denote
the profit of each CN to handle a set of TAs ω. To compute
v(CN , ω), similarly to v(S), we compute the different ξδ , F
and then G. We formally define v(CN , ω) as follows:

v(CN , ω) =

{
0 If |S| = 0 or QoS is not ensured.
Pϑ − G(CN , ω) Otherwise

(15)

TABLE III
THE PROFIT OF EVERY CN .

TAs v(CN 1, ω) v(CN 2, ω) v(CN 3, ω)
{A} 120 140 50
{B} 100 90 10
{A,B} 70 80 0

Table III shows the profit of each CN when handling
the different TAs. The profits in this table are presented as
numbers that represent the difference between Pϑ and the
cost incurred by the resources dedicated to a VM/container
(i.e., CPU, storage) and the management of VMs/containers
(i.e., instantiation and migration), as well as the QoS ensured
by different CN . Meanwhile, Table IV shows the different
CN coalitions that can be formed, the mapping of each TA
with its CN through functions F and G, as well as v(S)
and ΠS . Table IV is filed from Table III using (1), the
two optimization problems ((2)−(6)) and ((7)−(10)), (11) and
(13), respectively. Based on Constraint (9), every CN should
handle some TAs, otherwise the other TAs in the coalition
would not accept to share with it the profit. In the last row
in Table IV, CN 1 and CN 2 would not accept to share the
profit with CN 3. Thus, the grand coalition does not exist in
this game, and the core is empty. Relaxing the optimization
problem ((7) - (10)) by removing Constraint (9), the grand
coalition S = {CN 1, CN 2, CN 3} can be formed. However,
the coalition S = {CN 1, CN 2} may exit the grand coalition
as the profit of its players will be increased. Both players
CN 1 and CN 2 will gain 120 instead of 80 if they agree to
exit the grand coalition. As the coalition S = {CN 1, CN 2}
satisfies the following conditions ΠS(CN 1) ≥ v(CN 1) and
ΠS(CN 2) ≥ v(CN 2), the instance of ϑ will be built in CN 1

and CN 2. According to many parameters, such as the cost of
each flavor in each CN and QoS, the core may exist or not
in this game.

TABLE IV
THE MAPPING OF DIFFERENT COALITIONS.

S Mapping through G and F v(S) ΠS
{CN 1} A,B −→ CN 1 70 70
{CN 2} A,B −→ CN 2 80 80
{CN 3} A,B −→ CN 3 0 0
{CN 1, CN 2} A −→ CN 2, B −→ CN 1 240 120
{CN 1, CN 3} A −→ CN 3, B −→ CN 1 150 75
{CN 2, CN 3} A −→ CN 2, B −→ CN 3 150 75
{CN 1, CN 2, CN 3} A −→ CN 2, B −→ CN 1 240 80
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V. VIRTUAL-EPC MECHANISM

In this section, we present the basic concept of the coali-
tional game and the different mechanisms used for instanti-
ating vEPC/5G Core. In what follows, we will present the
different coalitional game mechanisms to build the instances
of each VNF ϑ one by one.

A. Coalitional game for building one vEPC/5G Core instance

The coalitional games are classified into three classes [29]:
i) Canonical (coalitional) games; ii) Coalitional formation
games; and iii) Coalitional graph games. In the first category,
the grand coalition of the players is optimal. The aim in
this kind of games is how to stabilize the grand coalition by
suggestion an appropriate payoff vector. The second category,
used in this paper, aims to form the different coalitions,
such that the profit of the different players is increased. The
coalition formation would be defined according to the gain
and the cost from the cooperation. The main objective of the
studies on this category of games is to define the appropriate
game structure and study its property. In the last category of
games, the players interact between them via a communication
graph. The main objective of this game is the stabilization of
the grand coalition or the forming of different coalitions by
considering the communication graph.

Based on the above-mentioned example (Tables III and
IV), the core can be empty in this game. Effectively, if
some CN s cannot offer the required QoS, the core would
be then empty in this game. For this reason, this paper falls
in the coalitional formation games category, where the goal
is to increase the profit of the coalition of CN s, in order
to increase their profit when forming vEPC/5G Core. This
game would be repeated for every VNF ϑ until the whole
vEPC/5G Core would be deployed. As indicated in Algorithm
1, the function instanceVNF(ϑ,Γ,Φ) is called repetitively for
every VNF ϑ. This function will call the coalitional game
mechanism to optimally place instances of ϑ. In the end of
instanceVNF(ϑ,Γ,Φ) execution, a partition Ξ of the grand
coalition Σ should be formed. Ξ = {S1,S2, ...,SK}, where
K is the number of coalitions which would be created. Each
CN should belong to only one coalition and all CN s should
belong to a coalition. Ξ is defined through the following
properties: i) ∀Si,Sj ∈ Ξ ∧ i 6= j =⇒ Si ∩ Sj = ∅; ii)⋃
∀S∈Ξ

S = Σ. The function instanceVNF(ϑ,Γ,Φ) will return a

set of coalitions, where the VNF ϑ would be deployed. virtual-
EPC, via bestCoalition(Ξ), will choose the best coalition. The
selected coalition would be the one that ensures high profit of
its members. The coalitions that do not ensure QoS will not
be considered as their payoff is zero. In what follows, we will
define the concept used in the proposed coalitional game.

Definition 5. Let C be a set of coalitions defined as C =
{S1, ...,SK}. C is collection if it satisfies the following
condition: ∀Si,Sj ∈ C ∧ i 6= j =⇒ Si ∩Sj = ∅. If

⋃
S∈C

= Σ,

then C is called a partition of the grand coalition Σ.

Definition 6. In the coalitional game, the different collections
would be compared to the coalition that increases the payoff
of different players. We denote by B the comparison relation

between two partitions C1 and C2, that partition the same set
η of CN s. Formally,

⋃
S∈C1

=
⋃
S∈C2

= η. We mean by C1 BC2

the way of grouping different players in C1 is better than the
one in C2.

As we have mentioned in Table IV, each CN aims to
increase its profit as much as possible without taking into
account the other players. In this game, we are interested
in the payoff of every player rather than in the coalition
value. The comparison in coalitional game is based on the
merge and split rules to form the coalition that will hold
the instances of ϑ later. In what follows, we will define the
merge and split rules of our game. We consider two collections
Cs = {S1,S2, ...,SK} and Cm =

⋃K
i=1 Si. Cs consists of a

set of coalitions, whereas Cm forms one coalition. Both Cs
and Cm are partitions of the same set of CN s. We define
two comparison relations Bm and Bs for the merge and split,
respectively. Note that CN s are selfish as each of them aims
to increase its payoff without carrying about the other players.
The merge Bm and split Bs relations are defined as follows:

Cm Bm Cs ⇔{(∀S ∈ Cs, ∀CN ∈ S :

ΠCm (CN ) ≥ ΠS(CN ))

∧ (∃S′ ∈ Cs, ∃CN ∈ S′ :

ΠCm (CN ) > ΠS′ (CN ))} (16)

Cs Bs Cm ⇔{∃S ∈ Cs :

(∀CN ∈ S : ΠS(CN ) ≥ ΠCm (CN )∧
∃CN ∈ S : ΠS(CN ) > ΠCm (CN ))} (17)

From (16) Cm is preferred than Cs iff at least one player
CN will enhance its payoff while the payoffs of the others
would not be decreased when merging the coalitions in Cs
into Cm. Meanwhile, Equation (17) shows that Cs will be
preferred than Cm, iff there is at least one coalition S ∈ Cs,
which guarantees that its players would save their profits if
they split from Cm and at least one of them will enhance its
payoffs. The split process is selfish in a sense that the split of
S from Cm does not take into account the waste of the other
players in Cm −S. Based on the split and merge comparison
relations, in our game, we propose two rules for the merge
and split process:
• Merge rule: The function instanceVNF(ϑ,Γ,Φ) will

merge any collection of coalitions Cs = {S1,S2, ...,SK}
to Cm iff Cm Bm Cs;

• Split rule: The function instanceVNF(ϑ,Γ,Φ) will split
a coalition Cm to Cs = {S1,S2, ...,SK} iff Cs Bs Cm.

A set of coalitions will be merged using merge rule, iff one
player will enhance its payoff while the profit of others is
saved. Meanwhile, the split rule is selfish in the sense that
a coalition S will leave Cm iff at least one player in S
enhances its payoff, while the payoffs of the other players
in S are not affected and without taking into account the
payoffs of the other players in Cm − S . In the end of the
instanceVNF(ϑ,Γ,Φ) function, a collection of coalitions will
be returned. Using the procedure bestCoalition(Ξ), the best
coalition from this collection will be selected to hold the
instances of ϑ later.

In what follows, we will show how the merge and split
processes operate. We consider two coalitions S1 and S2,
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where S1∩S2 = ∅. Based on (13) and (16), S1 and S2 would
be merged into Sm = {S1,S2} iff the following conditions
are fulfilled:

1) The two following conditions are correct:
a) ∀CN ∈ S1 : ΠSm (CN ) ≥ ΠS1 (CN )

b) ∀CN ∈ S2 : ΠSm (CN ) ≥ ΠS2 (CN )

2) One of the following conditions is correct:
a) ∃CN ∈ S1 : ΠSm (CN ) > ΠS1 (CN )

b) ∃CN ∈ S2 : ΠSm (CN ) > ΠS2 (CN )

The instanceVNF(ϑ,Γ,Φ) function will merge two coali-
tions S1 and S2 iff at least the profit of one player in this
coalition will increase while the profit of all the others players
will remain unaffected. For the split mechanism, a coalition
Sm = {S1,S2} would split into two coalitions S1 and S2,
iff the conditions in (17) are met. S1 (resp., S2) will split
from Sm, iff at least one player in S1 (resp., S2) enhances its
payoff while the payoffs of the other players in S1 (resp., S2)
are not affected. Formally, Sm = {S1,S2} will split into two
coalitions S1 and S2 iff one of the following conditions are
fulfilled:

1) The two following conditions are correct:
a) ∀CN ∈ S1 : ΠS1 (CN ) ≥ ΠSm (CN )

b) ∃CN ∈ S1 : ΠS1 (CN ) > ΠSm (CN )

2) The two following conditions are correct:
a) ∀CN ∈ S2 : ΠS2 (CN ) ≥ ΠSm (CN )

b) ∃CN ∈ S2 : ΠS2 (CN ) > ΠSm (CN )

The instanceVNF(ϑ,Γ,Φ) function will split any coalition
Sm if the above-mentioned conditions are met. Note that in
the split process, the QoS would be ensured as the players
would not accept to split if their profits are reduced. As stated
earlier, only the best coalition from the collection returned by
instanceVNF(ϑ,Γ,Φ) will hold the instances of ϑ. The split
process does not affect the best coalition, as a coalition S
would split from another coalition Sm iff all the profits of
its players are not reduced and at least one of them should
increase its payoff. Another important feature of a coalitional
game is the stability. In a coalitional game, a collection Ξ is
IDp-stable if no player has the intention to leave its respective
coalition. IDp-stable can be also defined as the set of coalitions
in Ξ that do not have the intention to merge or split any further.

B. Algorithm description for building one vEPC/5G Core
instance

In this subsection, we will explain the instanceVNF(ϑ,Γ,Φ)
function that uses coalitional game to deploy the instances of ϑ
across different CN s. In this function, we assume that the QoS
desired for a TA A can be assured by every CN . Since both
functions F and G require an important amount of resources,
we will use the dynamic programming technique when imple-
menting the function instanceVNF(ϑ,Γ,Φ). The function F
should not be computed twice for the same CN and the same
ω ∈ Ω. Similarly, the function G should not be computed
twice for the same subset of CN s S. Algorithm 2 is used
to explain the general functionality of instanceVNF(ϑ,Γ,Φ).

Algorithm 2 instanceVNF(ϑ,Γ,Φ)

Input:
ϑ: A component of vEPC.
Γ: The number of cumulative events.
Φ: The number of cumulative events would be omitted.

1: Ξ = {{DC1}, {DC2}, ..., {DC|Σ|}};
2: visited = ∅;
3: while True do
4: stop = True
5: for all S ∈ Ξ do
6: if S /∈ Ψ then
7: Ψ[S] = v(S)
8: end if
9: end for

// Merging process
10: for all Si,Sj ∈ combinations(Ξ, 2) \ visited do
11: visited = visited ∪ {(Si,Sj)};
12: if {Si ∪ Sj} /∈ Ψ then
13: Ψ[Si ∪ Sj ] = v(Si ∪ Sj)
14: end if

// Using Ψ the values of ΠSi
, ΠSj

and ΠSi∪Si
are

computed
15: if {Si ∪ Sj}⊲m {{Si}, {Sj}} then
16: Ξ = Ξ \ {Si}; Ξ = Ξ \ {Sj}; Ξ = Ξ ∪ {Si ∪ Sj};
17: stop = False;
18: break;
19: end if
20: end for

// Split process
21: for all S ∈ Ξ ∧ |S| > 1 do
22: break = False;
23: for all {Si,Sj} ∈ S ∧Si∪Sj = S ∧Si∩Sj = ∅ do
24: if Si /∈ Ψ then
25: Ψ[Si] = v(Si)
26: end if
27: if Sj /∈ Ψ then
28: Ψ[Sj ] = v(Sj)
29: end if

// Using Ψ the values of ΠSi , ΠSj and ΠS are
computed

30: if {{Si}, {Sj}}⊲s S then
31: Ξ = Ξ \ {S}; Ξ = Ξ ∪ Si; Ξ = Ξ ∪ Sj ;
32: stop = False;
33: break = True;
34: break;
35: end if
36: end for
37: if break = True then
38: break;
39: end if
40: end for
41: if stop = True then
42: break;
43: end if
44: end while
45: return Ξ;

Due to space limitation, the calculation redundancy of function
F is not presented in Algorithm 2.

The function instanceVNF(ϑ,Γ,Φ) first starts by forming a
collection Ξ by putting every player CN in a separate coalition
(Algorithm 2: Line 1). Then, a variable visited is initialized
by ∅ (Algorithm 2: Line 2). The variable visited is used
to keep track of every pair of coalitions which was already
visited for the merge. Every visited pair of coalitions will be
put in the set visited. Then, a while loop is executed where
the merge and split processes are executed repetitively until
achieving the IDp-stable collection (Algorithm 2: Lines 3−44).
instanceVNF(ϑ,Γ,Φ) computes the values of v(S) using (11)
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and ensures that the function G is executed only when needed
(Algorithm 2: Lines 5− 9). To prevent the redundancy in the
computation, the vector Ψ is used to store the values of v(S).

In instanceVNF(ϑ,Γ,Φ), the merge and split processes are
executed one after the other. In other words, only one merge
(Algorithm 2: Lines 10−20) would be executed, and then only
one split (Algorithm 2: Lines 21−40) would be executed until
achieving the IDp-stable collection. In the merging process,
every pair of coalitions Si and Sj , which are not yet visited,
are tested if they can be merged or not (Algorithm 2: Line
10). These pairs of coalitions are put in the vector visited to
prevent redundancy checks (Algorithm 2: Line 11). To prevent
the execution of the function G twice, the value of v(Si ∪Sj)
will be put in the vector Ψ (Algorithm 2: Lines 12−14). If the
merging condition ({Si ∪ Sj}Bm {{Si} ∪ {Sj}}) is verified,
we merge these coalitions in the same coalition, and then exit
the merging process to execute the split process (Algorithm
2: Lines 15−19). Otherwise, another pair of coalitions which
was not visited yet, will be tested. Meanwhile, in the split
process, we will consider every coalition S that has more than
one player CN (Algorithm 2: Line 21). We try to split every
two sub-coalitions Si and Sj of S that satisfy the following
conditions: i) Si∪Sj = S; ii) Si∩Sj = ∅ (Algorithm 2: Line
23). The partitioning of the coalition S is done through the
partitioning of an integer into two parts [28]. For example, the
coalition {CN 1, CN 2, CN 3} can be presented with a number
7 (i.e., 111), whereas the coalitions {CN 1, CN 3} and {CN 2}
would be presented with the numbers 5 (i.e., 101) and 2
(i.e., 010), respectively. Enumerating all the possible two sub-
coalitions of S that satisfy the condition in Algorithm 2: Line
23 is equivalent to finding all the two numbers whereby the
sum of these numbers equals to the number that represents S.
Using the same approach, the redundancy in the computation
of G is also prevented in the split process (Algorithm 2: Lines
24− 29). Then, the function instanceVNF(ϑ,Γ,Φ) splits S if
it is better for the collection Ξ (Algorithm 2: Lines 30− 35).
If one split succeeds, we exit the split process and re-initiate
the merge process. Note that the variable stop will be set to
false if only one merge or one split is carried out, and then
the algorithm keeps repeating the loop (Algorithm 2: Lines
3 − 44) until achieving the IDp-stable collection. Then, no
further merge or split processes will be carried out.

In what follows, we will refer to the example of Ta-
bles III and IV to show how the split and merge rules
are applied to form the collection of the coalitions Ξ. As
mentioned in Table III, the network consists of three CN s
CN 1, CN 2 and CN 3. The E-UTRAN is formed in two
TAs A and B. The function instanceVNF(ϑ,Γ,Φ) starts
the execution by putting every player CN in a separate
coalition Ξ = {{CN 1}, {CN 2}, {CN 3}}. Based on Algo-
rithm 2, the merge process starts first. From Table IV, we
have {CN 1, CN 3} Bm {{CN 1}, {CN 3}}, since both play-
ers will increase their payoffs. Then, the collection Ξ will
be updated as follows: Ξ = {{CN 1, CN 3}, {CN 2}}. In
this case, Ξ is composed of two coalitions. In the split
process, as the condition {{CN 1}, {CN 3}} Bs {CN 1, CN 3}
is not verified, the split process is omitted in this itera-
tion. As the collection Ξ is not IDp-stable, we re-initiated

the merging process. Now, we have {CN 1, CN 3, CN 2} Bm
{{CN 1, CN 3}, {CN 2}}, as both players CN 1 and CN 3 will
increase their profits while the profit of player CN 2 remains
the same. Applying this merge rule will impact the collection
Ξ, which will be updated to contain only one coalition
Ξ = {CN 1, CN 2, CN 3}. In the split process, we have
{{CN 1, CN 2}, {CN 3}} Bs {CN 1, CN 3, CN 2} as the profit
of both players in the coalition {CN 1, CN 2} is increased to
120 instead of 80. Then, the coalition {{CN 1, CN 2}, {CN 3}}
will split into two coalitions and then the collection Ξ is
updated as Ξ = {{CN 1, CN 2}, {CN 3}}. In this state, the
coalition {CN 1, CN 2} will not accept neither a merge nor
a split and the game will accordingly terminate. The same
collection can be achieved even if we adopt any other order of
merge and split rules. As the coalitions in the collection Ξ are
not able to merge or split (no player has the intention to exit
its respective coalition), Ξ is IDp-stable. instanceVNF(ϑ,Γ,Φ)
will return the collection Ξ, and the coalition {CN 1, CN 2}
will be accordingly selected to hold the instances of ϑ as it
has the highest payoff value.

Theorem 3. The function instanceVNF(ϑ,Γ,Φ) terminates
and produces an IDp-stable collection.

Proof. The merge and split processes are repetitively called
in the function instanceVNF(ϑ,Γ,Φ) until no further split
or merge process is required. In this case, the proposed
algorithm terminates and returns the IDp-stable collection.
Since the number of partitions of the grand coalition is
finite, the function instanceVNF(ϑ,Γ,Φ) would not terminate
iff there is a cycle in the merge or split process. In what
follows, we will show that there is no cycle in the merge
and split processes and accordingly demonstrate that the
function instanceVNF(ϑ,Γ,Φ) terminates. The merge and split
operations are done based on (16) and (17), where a new
collection is more preferred than the previous one. Let Si and
Sj be two coalitions in the collection Ξ. Si and Sj would be
merged into S = Si ∪ Sj iff S Bm {Si,Sj}. In order that the
above condition is correct (16), there should exist at least one
player CN ∈ Si (resp., CN ∈ Sj) that enhances its payoff
in S; ΠS(CN ) > ΠSi(CN ) (resp., ΠS(CN ) > ΠSj (CN )).
Based on the observation that the proposed algorithm moves
from a collection to a better collection after one or multiple
merge and split operations, S cannot split to the coalitions Si
and Sj . Based on (17), if Si and Sj are merged into S then
{Si,Sj}BsS would be not verified. We argue this by the fact
that there is at least one player CN ∈ Si (resp., CN ∈ Sj),
where ΠS(CN ) > ΠSi(CN ) (resp., ΠS(CN ) > ΠSj (CN )).
Then, no cycle in the merge and split process would be created.
This means that the function instanceVNF(ϑ,Γ,Φ) terminates
and produces an IDp-stable collection.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed scheme to instantiate vEPC/5G Core instances over a
federated cloud of CN s. As comparison terms, we use two
trivial solutions. The first one, named G-EPC, uses the Grand
coalition Σ for the deployment of v-EPC. In this solution, all
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Fig. 3. The performance evaluation of the proposed virtual-EPC scheme for a varying number of TAs.

CN s participate in creating different instances of each VNF ϑ,
whereas the second solution uses a random deployment over
CN s. In this solution, a greedy Algorithm is used, whereby
different CN s are randomly selected one by one, as well as
the instancing of VNFs are randomly created one by one,
until the traffic generated from Ω is handled. Only then, the
greedy Algorithm is finished and the random coalition of
CN s is selected. The algorithms are evaluated in terms of
the following metrics:

• Payoff of individual CN : is defined as the average value
of individual payoffs for each player in the selected
coalitions of different instances of each VNF ϑ;

• Number of merge and split: is defined as the average
number of merge and split operations needed to deploy
each VNF ϑ. This metric shows the complexity of the
underlying scheme virtual-EPC;

• Number of CN s in the selected coalition: is defined as
the average number of players in the selected coalition
for each instance of each VNF ϑ.

The algorithms are evaluated using the python programming
language and an extended package for graph theory called net-
workx [31]. We implement the proposed virtual-EPC scheme
using IBM ILOG CPLEX version 12.6.1, using the branch-
and-bound method to solve the optimization problems. We
used historical data from real-life mobile operator network
to evaluate the different solutions; i.e., the different events
generated in the network, such as the attach or detach operation
of a UE, the executed procedure and the number of generated
messages. In the simulation results, each plotted point repre-
sents the average of 10 executions. The plots are presented
with 95% confidence interval. The different algorithms are
evaluated by varying the number of TAs and the number of
CN s. We conduct two sets of experiments. Firstly, we vary
the number of TAs and fix the number of CN s to 15. In the
second scenario, we vary the number of CN s while fixing
the number of TAs to 50. The value of P – the price that a
vEPC/5G Core operator is willing to pay – is set proportional
to the number of TAs in the network.

Fig. 3 shows the performance of the three solutions for a
varying number of TAs. Fig. 3(a) depicts the impact of the
number of TAs on individual payoffs of each CN . We clearly
observe that the proposed virtual-EPC solution outperforms
both base-line approaches. Moreover, we remark that the use

of grand coalition or only one coalition does not yield an
optimal solution. From this figure, an increase in the number
of TAs has a positive impact on the individual payoffs in all
the solutions. For 100 TAs, the proposed virtual-EPC solution
achieves an individual payoff of 140000, while the individual
payoff of base-line approaches does not exceed 80000, which
represents an enhancement of 75%. Indeed, the proposed
virtual-EPC solution succeeds in forming the optimal coalition
for each instance among all the players CN s, which reduces
the cost and hence increases the profit of each player in the
selected coalition. In Fig. 3(b), we notice that the number
of involved CN s increases proportionally with the number of
TAs in the network; from which we conclude that the proposed
virtual-EPC solution uses the average number of CN s to form
vEPC/5G Core instances. On the other hand, we observe from
Fig. 3(c) that the number of merge and split operations in the
proposed solutions does not exceed 20. This means that the
proposed solution converges to the optimal solution within
reasonable time. From this figure, we also observe that the
number of TAs has a negative impact on the number of merge
and split operations. The higher the number of TAs, the higher
the value of F(ϑ, CN , ω ∈ Ω), and consequently the more
split and merge operations.

Fig. 4 depicts the performance of the three solutions for
varying numbers of players CN s. In Fig. 4(a), we illustrate
the evaluation of individual payoff of each CN . From this
figure, we remark that an increase in the number of players
has a positive impact on the individual payoff of each player
in the selected coalitions formed by the proposed solution.
Furthermore, we remark that G-EPC outperforms O-EPC
when the number of players is less than 12 CN s. When
the number of CN s exceeds 12, O-EPC outperforms G-EPC.
This can be explained as follows: when the number of CN s
is less than 12 (the ratio of TAs per CN is high), then
the players in the selected coalitions equitably participate to
handle the different TAs. Whereas, when the ratio of TAs
per CN decreases, many CN s in G-EPC end up sharing the
profits for handling only a small number of TAs. In contrast
to these solutions, the proposed virtual-EPC solution selects
the coalitions in an efficient way, such that the profit of the
players is increased as much as possible. For example, in case
the number of CN s is 30, the proposed scheme outperforms
the baseline approaches with more than 233%. Fig. 4(b) shows
that the number of CN s in the selected coalitions increases
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Fig. 4. The performance evaluation of virtual-EPC for varying numbers of CN s.

proportionally with the number of CN s in the network. The
higher the number of CN s in the network is, the higher the
likelihood to select them in the best coalition becomes. Fig.
4(c) shows that the number of merge and split operations in
the proposed solution increases proportionally with the number
of players CN s. An increase in the number of players leads
to an increase in the number of possible combinations, which
intuitively has a negative impact on the number of merge and
split operations. Finally, we observe from this figure that the
number of merge and split operations still does not exceed
25; meaning that the proposed solution would converge to the
optimal solution within reasonable time.

VII. CONCLUSION

The upcoming 5G mobile system will be based on the
concept of carrier cloud to facilitate the upgrade for other next
generation mobile systems. The carrier cloud would be enabled
through the use of emerging technologies, such as Network
Function Virtualization (NFV), Software Defined Networking
(SDN) and Cloud Computing. In this paper, we developed a
new framework for building virtual EPC instances as a Service
(EPCaaS). The aim of this framework is the placement of VNF
of virtual EPC in an efficient way over a federated CN . To
achieve the desired objectives, two algorithms were proposed:
the first one uses Mixed Integer Linear Programming (MILP)
to devise the optimal number of virtual resource instances of
the different VNFs of vEPC/5G Core that should be deployed
in the network; the second algorithm uses coalitional game
to place these instances across different CN s, such that the
QoS is ensured and the profit of each CN is maximized. The
simulation results demonstrates the efficiency of the proposed
framework in achieving its key design objectives.
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