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Abstract—The Industry 4.0 sector is evolving in a tremendous
pace by introducing a set of industrial automation mechanisms
tightly coupled with the exploitation of Internet of Things (IoT),
5G and Artificial Intelligence (AI) technologies. By combining
such emerging technologies, interconnected sensors, instruments,
and other industrial devices are networked together with in-
dustrial applications, formulating the Industrial IoT (IIoT) and
aiming to improve the efficiency and reliability of the deployed
applications and provide Quality of Service (QoS) guarantees.
However, in a 5G era, efficient, reliable and highly performant
applications’ provision has to be combined with exploitation
of capabilities offered by 5G networks. Optimal usage of the
available resources has to be realised, while guaranteeing strict
QoS requirements such as high data rates, ultra-low latency
and jitter. The first step towards this direction is based on the
accurate profiling of vertical industries’ applications in terms
of resources usage, capacity limits and reliability characteristics.
To achieve so, in this paper we provide an integrated method-
ology and approach for benchmarking and profiling 5G vertical
industries’ applications. This approach covers the realisation of
benchmarking experiments and the extraction of insights based
on the analysis of the collected data. Such insights are considered
the cornerstones for the development of AI models that can lead
to optimal infrastructure usage along with assurance of high QoS
provision. The detailed approach is applied in a real IIoT use
case, leading to profiling of a set of 5G network functions.

Index Terms—Network Function Virtualization, NFV orches-
tration, benchmarking, profiling, big data analytics, 5G networks

I. INTRODUCTION

5G networks design and implementation is considered as a
key issue to support the introduction of digital technologies
in economic and societal processes, leading to the fourth
industrial revolution and impacting multiple sectors [1]. The

rationale for the development of the 5th generation of mo-
bile communications was not only to expand the broadband
capabilities of mobile networks, but also to provide advanced
network connectivity, Quality of Service (QoS), security and
reliability guarantees for a wide variety of vertical industries.
Under this perspective, the integration of verticals is consid-
ered as one of the key differentiators between 4G and 5G
systems. One of the main distinguishing points in comparison
with previous generations is the 5G technologies’ strong focus
on machine-type communication and the Internet of Things
(IoT) [2]. This focus makes 5G technologies very well suited
for serving networking requirements in the Industry 4.0, given
that Industry 4.0 integrates the IoT technologies within the
industrial manufacturing sector [3].

Moving one step further and aiming to cope with the in-
creasing demands of next generation industrial automation, the
adoption of Artificial Intelligence (AI) technologies is emerg-
ing, leading to a convergence of 5G, AI and IoT mechanisms.
Such a convergence provides a set of opportunities for the
transition to an Industry 4.0 era, with notable improvements
in terms of efficiency, modularity, management, automation
and usability of future smart factories across all layers of
the production processes. Actionable insights can be produced
based on real-time or offline processing of the collected data
from the industrial IoT devices, leading to continuous injection
of intelligence in 5G orchestration mechanisms. Machine
learning mechanisms can be designed and applied, supporting
various industrial processes, such as time-critical operations,
mobile robotics and predictive maintenance functionalities. By
adopting such novel technologies, operating expenses saving
of 15-20 percent can be achieved in smart factories, helping
production operations to become more flexible, efficient, safer,978-1-7281-5684-2/20/$31.00 ©2020 IEEE
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and cheaper to maintain [4].
Given the aforementioned trends, it can be claimed that

various opportunities are arising for designing and developing
novel, reliable and efficient Industry 4.0 services. However,
as stated by the 5G Alliance for Connected Industries and
Automation [3], in order to make the transition from research
lab to commercial market, the adoption of 5G technologies in
the manufacturing industry has to be combined with sufficient
validation from testbed/trial activities. Profiling of vertical
industries’ applications in terms of consumption of resources,
elasticity efficiency, ability to adapt to dynamic network con-
ditions and failures as well as identification of patterns in
the overall behaviour of the application, can lead to insights
extremely helpful to system administrators and production
managers for optimally managing their production processes
and automating software development and information tech-
nology operations (DevOps) over a 5G enabled infrastructure.

In this paper, we provide an integrated methodology and
approach for benchmarking and profiling 5G vertical indus-
tries’ applications. Focus is given on the interconnection of
the proposed benchmarking and profiling tools in a way
that can facilitate end users to extract insights with regards
to resources usage patterns. A workflow is provided that
supports experimentation with each considered application, the
aggregation of monitoring data for resource usage and virtual
network function (VNF)-specific metrics and the analysis of
the aggregated data.

The main novelty of the proposed approach regards the
provision of an integrated framework -based on open-source
tools- that offers flexibility in software developers and service
providers to realise experiments and achieve profiling of their
applications in terms of resource and elasticity efficiency.
Based on the produced results, proper dimensioning of the
applications in terms of resources’ usage needs and design of
efficient operational policies can be achieved. Furthermore, the
provided framework enables data scientists to easily onboard
analysis scripts and realise analysis over the collected time
series data based on the consumption of open Application
Programming Interfaces (APIs). A DevOps approach for appli-
cations lifecycle management is adopted, where profiling and
feedback produced through experimentation and analysis leads
to continuous improvements in the developed software. The
proposed approach is applied in a real smart manufacturing
use case in the Weidmüller Group that provides products,
solutions and services for the Smart Industrial Connectivity
and Industrial Internet of Things (IIoT).

II. STATE OF THE ART AND BEYOND

A. Benchmarking Methodologies and Frameworks

The cloud-computing community introduced several solu-
tions for performance benchmarking of virtualized applica-
tions. Most of them focus on solutions to benchmark single-
VM applications [5], [6], but some solutions also support
complex applications [7]. However, none of them focuses on
packet processing elements or specific 5G scenarios. To this
end, the Network Function Virtualization (NFV) community

started to define benchmarking and test methodologies that
allow to collect data that describes how single VNFs or com-
plex Service Function Chains (SFCs) behave under different
configurations or in different environments [8], [9].

Based on these methodologies, a series of benchmarking
frameworks has been proposed that either focus on bench-
marking single VNFs or on evaluating NFV infrastructure
deployments [10]–[12]. Others do consider benchmarking of
complex SFCs [13] to characterize the performance behavior
of end-to-end services, which cannot be derived from isolated
VNF benchmarks [14]–[16]. Still, these tools and frameworks
suffer from the fact that they provide only limited automation
of the benchmarking process or the unavailability of their
source code. Such a limitation is tackled in our previous work
presented in [14] that provides a first prototype for end-to-end
automated NFV benchmarking. This prototype has been turned
into an open-source project, called tng-bench, which allows to
automatically perform benchmarks of NFV components, such
as single VNFs or complex SFCs, in a fully automated fashion
and in a wide variety of scenarios, such as 5G verticals [17].

In this paper, we utilize this novel tool to apply benchmark-
ing methods to an Industry 4.0 scenario. More specifically,
we perform a series of benchmarking experiments in order
to mine, to the best of our knowledge, one of the first NFV
benchmarking datasets of a realistic 5G smart manufacturing
scenario.

B. Profiling Network Applications and Services

Similarly to benchmarking frameworks, lot of work has
been realised for the design and implementation of profiling
approaches for cloud computing applications, focusing mainly
on resource efficiency aspects and optimal infrastructure setup
to serve the applications workload [18], [19]. In the 5G world
and especially in the NFV community, specifications evolve
with regards to standard mechanisms for realising analysis,
e.g. in IETF [20] and in the 5G PPP Test, Measurement
and KPIs Validation working group [21]. Some VNF pro-
filing approaches like NFV Inspector [16] support profiling
and classification of VNFs based on resource capacities and
underlying system properties and extract the correlation among
QoS metrics and resource utilization of VNFs. Reference [22]
proposes a model-based analytics approach for profiling VNF
workloads that captures traffic burstiness, while in our previous
work [14], we have introduced a fully automated, flexible, and
platform-agnostic profiling system that allows to profile entire
SFCs at once. In [23], the use of reinforcement learning to
promote resilience in Software Defined Networking (SDN)
environments is considered. Finally, in [24], a set of NFV
workload efficiency quality attributes are specified, including
VNF resource efficiency, VNF elasticity efficiency and NFV
orchestration efficiency aspects.

In the current work, the profiling approach is based on an
analytics engine that we have developed and made available as
an open-source project, called tng-analytics-engine [25]. The
analytics engine permits the easy incorporation and execution
of analysis processes, taking advantage of time series data
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collected by the realised benchmarks [25]. An integrated
framework is provided, combining benchmarking and profiling
kits and significantly reducing the overhead of data preparation
and configuration of analysis processes. The role of the data
scientist for designing and applying novel machine learning
mechanisms is highlighted, since their design is totally de-
coupled from the way that the benchmarking experiments
are realised and the experiments results are collected. In
this way, newly developed or existing analysis scripts can
be easily integrated and supported, without any dependency
on the System Under Test (SUT) setup and the workload
characteristics.

C. Artificial Intelligence for Smart Manufacturing

Several recent works have highlighted the importance of
including AI techniques for smart manufacturing [26]. In this
paper, we detail a framework that supports onboarding of
machine learning mechanisms in an analytics engine and apply
a set of analysis processes in a 5G smart manufacturing use
case, which concerns the interconnection and integration of
machine data from various manufacturing machines. We use an
automated benchmarking approach to generate vast amounts of
data, which we then analyze using network service profiling.

To generate big data for analysis purposes in the manufac-
turing domain, Tao et al. [27] propose to use the so called
digital twins. We apply this suggestion and consider digital
twins in our use case. Moreover, we go beyond this existing
work by applying our automated benchmarking and profiling
approach to achieve in-depth analysis insights. It should be
noted that the proposed work and architectural framework is
generic enough and can be applied in various 5G scenarios, not
limited in smart manufacturing verticals. For instance, similar
work has taken place for verticals related to immersive media,
video and VoIP communications [28].

D. Progress Beyond the State of the Art

The main innovation introduced in this paper is the provi-
sion of an integrated framework for benchmarking and profil-
ing of 5G verticals’ applications. This framework builds upon
our already developed open-source tool for benchmarking,
called tng-bench [17], and a newly developed open-source tool
for profiling, called tng-analytics-engine [25]. A workflow is
provided that supports the realisation of a set of benchmarking
experiments, the collection of the experiments’ time-series
data, the realisation of various analysis processes over them
and the extraction of performance insights. Emphasis is given
on the easiness of realising benchmarking experiments and
analysis processes, as well as the provision of a set of simple
steps for integration of further analysis scripts by data scien-
tists. As already stated, the proposed framework is applied in
a real manufacturing use case, aiming at an initial evaluation
of the framework’s validity and usefuleness for the extraction
of performance characteristics of 5G verticals’ applications.
Such an evaluation process is considered as a proof of concept,
where the instantiation of the detailed workflow can guide

more advanced experiments and analyses in upcoming works
in the future.

III. SMART MANUFACTURING USE CASE

To test and verify the concepts proposed in this paper,
we consider a smart manufacturing scenario, which we have
initially introduced in our previous work [29]. This use case
uses NFV-based services, each consisting of multiple VNFs,
to allow the flexible control and monitoring of manufacturing
machines, such as injection molding machines. The use of
NFV technology complements the envisioned 5G scenarios
in which manufacturing machines are interconnected by 5G
radio technology deployed within the machine park. By using
software-based, e.g., NFV, solutions to deploy and operate
the required control and monitoring functionalities as part of
the 5G network, quick and automated reconfigurations of the
machine parks become possible. For example, in today’s man-
ufacturing machine parks, manufacturing machines have to be
connected and configured manually. This is time-consuming
and error-prone when setting up new machine parks and makes
on-demand reconfigurations of production lines, as envisioned
in Industry 4.0 scenarios, infeasible.

Together with the Weidmüller group, we developed such
a flexible NFV-based system, consisting of multiple network
services and VNFs, that can automate large parts of the ma-
chine interconnection and configuration. Each of these VNFs
can be deployed on top of edge infrastructure, e.g., Kubernetes
clusters, directly at the the machine park. Once deployed, the
involved network services automatically collect manufacturing
data (machine parameters or sensor measurements) from the
connected machines, aggregate them, and send them to the
company’s cloud backend (e.g., Azure IoT Hub). While the
analysis at the cloud allows long-term insights and correlation
of manufacturing data across machine parks, the system also
provides an edge analytics engine (EAE) for real-time analysis
of the machine data at the edge within the machine park.

More specifically, we developed two network services
(NSs): A factory edge service (NS1) and a machine inter-
connection service (NS2), as shown in Figure 1. NS2 is
instantiated once per manufacturing machine and provides
a machine data connector VNF (MDC) that handles the
interconnection with the machines and periodically collects
their manufacturing data. It connects to NS1, which is typically
started once per machine park but can be scaled according
to the demand using a MQTT broker VNF inside NS1. NS1
further handles the temporary local storage of machine data
in a database, their local visualization and analysis in the
EAE, and the connection of the company’s cloud backend.
Figure 1 illustrates this data flow between the involved VNFs
which is realised as an on-demand service overlay on top of
5G infrastructure. The used system also contains an intrusion
detection system (IDS) as part of NS1 which is a key com-
ponent for additional security measures preventing malicious
traffic to spread within a factory network. Additional VNFs,
like a software-based router (RTR), are used for flexible traffic
control within the system.

312



NS2: Machine Interconnection Service

RTRMDC

NS1: Factory Edge Service

MDC RTR

EAECC
Cloud
Push

MQTT
Broker

GrafanaMQTT
Prometheus

Exporter

Factory cloud
(e.g., Azure IoT Hub)

MQTT publish

MQTT publish

MQTT subscribe

Prometheus
DB

Prometheus scrape Prometheus query

IDS

Suricata
Samba share
Euromap63

Machine
(e.g., injection molding

machine)

Fig. 1. Smart manufacturing network services and data flow.

Besides optimising the deployment and provisioning of
the network services over the 5G infrastructure, guaranteeing
certain QoS levels is one of the key challenges for such
a software-based smart manufacturing system. Furthermore,
the design of machine learning models for forecasting and
undertaking of proactive actions (e.g. predictive maintenance)
is considered crucial. We address exactly this by performing
advanced performance analysis realised over results coming
from benchmarking tests in the case study in Section V. Those
analyses produce resources efficiency profiles for the involved
VNFs, identifying correlation between resources consumption
and QoS metrics and -where applicable- provide feedback for
the design of effective scaling scenarios. Such results are the
first steps towards the design and development of AI-oriented
processes applicable to operational environments.

More specifically, we report detailed benchmarking results
and the resulting performance models, e.g., efficiency profiles,
for the two key VNFs in our presented system, the IDS VNF
and the MQTT broker VNF, in the case study presented in
Section V. We picked those two VNFs because they are most
relevant for the overall system performance as well as for the
correct functionality of the system, e.g., if the IDS VNF is not
able to capture the complete traffic of the connected machine it
might miss intrusions. A performance model, produced by our
solution, that focuses on the number of missed IDS packets
as main metric can help to avoid such situations. Similarly,
performance models of the MQTT broker that give insights
into the achieved performance of the broker under different
MQTT QoS level configurations (message delivery at most
once (value 0), at least once (value 1), exactly once (value
2)), can help to correctly configure and deploy the MQTT
VNF to meet the required message rates.

IV. BENCHMARKING AND PROFILING FRAMEWORK

In this section, we describe the proposed integrated bench-
marking and profiling approach. Initially, we detail the overall
methodology and workflow followed for data aggregation

and analysis. Following, the main components of the bench-
marking and the profiling tools are presented, focusing on
the provided functionalities, the interconnection interfaces,
openness, interoperability and usability aspects.

A. Methodology and Analysis Workflow

We consider an end-to-end analysis process for benchmark-
ing and profiling of network services, covering the overall
lifecycle of the design, setup and execution of benchmarking
experiments, the collection of results in big data repositories
and the realisation of big data analysis over them. The follow-
ing steps are considered, as they are shown in Figure 2. The
first step defines the analysis scope, for example, extraction of
a performance profile, identification of a bottleneck or capacity
limit, verification of achievement of a performance target or
dimensioning of the required 5G infrastructure resources for
the provision of the network service. As a second step and in
accordance with the analysis scope, a set of experiments are
defined and executed. Depending on the type of the considered
software, different methods are followed to realise experi-
ments, including white, black and grey-box approaches. The
SUT definition is taking place and made available as metadata
of each experiment. Within the SUT’s definition, we consider
the assigned resources (compute, storage, disk, network) and
the type of the orchestrator to be used for network services
deployment and operation. The overall experiment config-
uration (e.g. number of iterations, test method, automation
techniques in terms of DevOps processes, deployment and
operational policies) is also specified. This step also defines the
stimuli used as input for an experiment, in particular, the input
workload characteristics, e.g., parameters for traffic generators
or traffic traces used to stimulate the SUT.

Fig. 2. Benchmarking and profiling workflow.

Following, experiments are executed to collect the intended
data. This is called “benchmarking process”. During each
benchmarking process execution, monitoring data with the
experiment results is collected and stored in a time-series
database. Such data includes resource usage metrics (e.g.
CPU/memory usage, incoming/outgoing traffic), QoS metrics
(e.g. jitter, delay, packet loss, throughput), orchestration met-
rics (e.g. deployment/scaling/reconfiguration time) and metrics
associated with the deployed VNFs (e.g. average http requests,
average query response time, packet processing time). The
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collected time-series data along with the outcome of each
experiment constitute the benchmarking process results.

The next step analyses the provided results; it is called
“profiling process”. A profiling process can be automated
and executed upon the end of the experiments, or realised
on demand. In the latter case, software developers or service
providers are interested on defining the type of the analysis
to be executed. The analysis leads to a set of profiling reports
related to resources usage efficiency (CPU, memory intensive-
ness), elasticity efficiency of the VNFs (time and capacity for
supporting scaling operations), identification of capacity limits
upon stressing the VNFs, identification of metrics whose high
correlation is statistically significant, reliability reports taking
into account time series data with identified failures, as well
as reports regarding behavioural aspects of the VNFs in terms
of capability for recovery from failures.

After the analysis, the results are made available to data
scientists, application providers and telecom operators for
interpretation. Moving one step further, the collected data
and results can be used as input towards the training and
evaluation of machine learning models, empowering the de-
sign of automation mechanisms, considering both automated
orchestration mechanisms and vertical applications-oriented
automation mechanisms (e.g. industrial automation).

B. Benchmarking

As mentioned in the last section, benchmarking describes
the process of running experiments and measurements on a
SUT with the goal to collect the required data to understand
the behaviour of the SUT. Executing such experiments and
measurements manually is not an option, since SUTs (e.g.,
complex network services) will have many different configu-
rations that need to be tested [14], [30]. And it is especially not
an option if an agile, DevOps-based environment is considered
where each deployment step between a code commit and the
deployment has to be automated.

To this end, the proposed benchmarking framework regards
an extension of an open-source tool [14], as it has been imple-
mented in our previous work, that provides a NFV benchmark-
ing automation framework. This tool is called “tng-bench” and
is shown in Figure 3. Each tng-bench setup consists of two
main components: the benchmarker (tng-bench) and one or
multiple NFV platforms to execute the actual experiments, i.e.,
deploy and run the SUTs (VNFs or services). Both components
should run in separated environments, e.g., on two separated
physical machines, and tng-bench must be able to connect to
the execution platform to control and monitor them.

A typical workflow to benchmark a given VNF or NS looks
as follows. First, a user (e.g. developer or analyst) specifies a
performance experiment description (PED), which is a YAML
document that describes the entire experiment, e.g., in terms of
configurations to be tested. This PED also references the VNF
or service package that contains the SUT. Once this document
is created, it is, together with the SUT package, given to
tng-bench which then reads it and starts the benchmarking
process (s1 in Figure 3). In the next step, tng-bench explores

Fig. 3. High-level architecture, artifacts and workflows of the benchmarking
framework.

the complete configuration space that should be tested, i.e.,
it computes the Cartesian product of all configuration options
and number of experiment repetitions specified in the PED.
Once this is done, the different configurations (which can
be thousands) are applied to the descriptors of the PED. For
example, new descriptors are generated in which 1 vCPU is
assigned to a SUT VNF, another is generated with 2 vCPUs,
and so on. In addition, probe VNFs are added to the SUTs, as it
is specified in the PED. Those probes can contain, e.g., traffic
generators used to stimulate the SUT during the experiments.
All these new configurations and probes are then used to
generate a series of new VNF or service packages, one for
each configuration to be tested (s2).

Once those SUT packages are generated, tng-bench enters
the next phase in which it starts to actually on-board those
packages on the connected execution platforms and deploy
them, one after each other (s3). After a new SUT package
is deployed (SUT and probes are instantiated), tng-bench
instructs the probes to start the experiment, e.g., to generate
traffic. This execution phase runs for a fixed amount of time
as defined by the PED, e.g., 10 minutes (s4). During this
time, tng-bench collects monitoring data from the execution
platforms, SUT, and probes and stores it (s5). Once the
experiment reaches its runtime limit, the SUT is terminated
and deleted before the next SUT package, containing another
configuration, is deployed. This process continuous until every
configuration has been deployed and tested and all results
and monitoring data is collected. Finally, the resulting data
is kept in a connected time-series database from where it can
be picked up for the profiling process.

C. Profiling

The profiling process is initiated based on the data from
a benchmarking process in the aforementioned time-series
database. A set of analysis processes are supported to extract
insights such as:

• Resource efficiency analysis for the identification of re-
source consumption trends and capacity limits, used for
planning optimal reservation of resources. The considered
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monitored metrics combine a resource usage metric (e.g.
CPU usage, memory usage) with a service output metric
(e.g. traffic served, HTTP requests served, active users).
Such an analysis is realised through the production of
(multiple) linear regression models.

• Elasticity efficiency analysis to assess the performance
of scaling operations, along with the impact of scaling
actions in the service output efficiency (e.g. traffic served
by a VNF). Elasticity efficiency is expressed as a pair
of discrete metrics, namely application capacity change
(incremental capacity change related to a scaling action)
and capacity change lead time (time required for a
capacity change). Such an analysis is primarily based on
monitoring and visualisation of elasticity actions. In a
second stage, training and application of machine learning
models for automated elasticity actions enforcement is
considered by service providers, facilitating the undertak-
ing of proactive elasticity actions for guaranteeing QoS.

• Correlation analysis for the identification of strong and
statistically significant correlations among infrastructure
and VNF-specific metrics, leading to various insights (e.g.
which parameters are highly dependent, which parameters
can create bottlenecks in the overall performance). Such
an analysis is realised through correlograms.

• Forecasting based on time-series decomposition mecha-
nisms. Such mechanisms are applied over resource usage
or workload metrics and provide feedback to elasticity
efficiency mechanisms. Various forecasting models are
supported based on the type of the time series data.

• Graph analysis for identification of bottlenecks in soft-
ware functions’ calls and the consideration of software
updates for optimal service provision. Such an analysis
is valuable for software consisted of microservices, where
performance issues and bottlenecks due to software func-
tions’ calls can be identified and provided as feedback to
software developers.

The high level architectural approach of the “Profiling”
component is depicted at Figure 4. A primary design principle
is the decoupling of the execution of an analysis process
from the overall analysis configuration and data management
(interfaces i1 and i2). We considered crucial to make it easy
to include extra data analysis services, based on analysis
scripts provided by data scientists that may cover a diverse
set of needs and objectives, as well as be developed in
different programming languages (e.g. R, Python). To do
so, we introduced the notion of a Proxy that can support –
through open APIs – the registration and execution of analysis
processes. In the current implementation, two kinds of proxies
are supported. Namely, the OpenCPU framework [31] for
embedded scientific computing that acts as a middle layer
interface to analysis scripts in R and the Flask microframework
[32] for analysis scripts in Python. The overall implementation
of the ”Profiling” component and the set of APIs is based
on Java. The developed APIs support the registration of an
analysis service, the fetching of the required time series

analysis data from the time series data repository, the execution
of an analysis service and the provision of the analysis results.

Fig. 4. High-level architecture, artifacts and workflows of the profiling
framework.

As already stated, a profiling process is realised over the
results made available from a benchmarking process (s1).
Given the support of a set of analysis services, the end
user is able to define a profiling descriptor (s2) that includes
information for the algorithm (analysis script) to be executed,
metadata related to configuration of the algorithm execution
part (e.g. input dataset, iterations) and the set of monitoring
metrics to be considered for the input dataset. It should be
noted that at the current implementation status, the supported
analysis services include (multiple) linear regression, clus-
tering, time-series decomposition, forecasting and correlation
analysis mechanisms. Upon the definition of the profiling
descriptor, an analysis may take place (s3, s4), leading to a
set of results that are usually made available through a set of
URLs (s5). In some cases, the results are also made available
(s6) for further processing (e.g. for supporting the increase
in the accuracy and reliability of machine learning models).
Concurrency in terms of parallel and isolated realization of
the analysis processes is ensured by design by the supported
proxies, while horizontal scalability is also tackled in cases
where big data analysis services can be executed (e.g. big
data parallel processing via Spark clusters).

V. CASE STUDY

A. Benchmarking Experiments and Systems under Test

We performed two benchmarking experiments to collect the
data needed to evaluate the presented methodology, approach
and tools. All experiments have been executed on a testbed
based on two machines with Intel(R) Xeon(R) W-2145 CPU
at 3.70 GHz CPU, 32 GB of memory, running Linux 4.4.0-142-
generic. We used vim-emu [33] as NFV platform connected
and controlled by tng-bench. Vim-emu allows to deploy and
control NFV scenarios on a single physical machine using
Docker containers. The tested VNFs as well as the probes used
to stimulate them are deployed as Docker containers, each of
them always pinned to its own set of physical CPU cores to
achieve isolation between VNFs and probes [14].

In the first experiment, we benchmark the intrusion detec-
tion system (IDS) VNF of NS2, as presented in Section III.
The VNF is based on Suricata 4.0 [34] and is deployed
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in a Docker container. This VNF acts as an example for
a typical security appliance used in vertical 5G scenarios.
During the experiment, the IDS is stimulated by two different
traffic traces, containing normal and malicious traces, taken
from [35]. We configure the VNF with a small and a large
IDS ruleset taken from [36]. Throughout the experiment, we
modify the resource configurations of the VNF container,
namely the number of available vCPU cores (1 to 12 cores), to
simulate an elastic deployment in which the VNF is vertically
scaled. Each configuration is executed for 10 minutes and the
data is collected with a frequency of 0.5 Hz. We collect a
total of 157 different time-series metrics, ranging from generic
metrics, like CPU usage, to application-specific metrics, like
the number of matched packets in the IDS resulting in a total
of 2.26 million data points in the resulting data set.

The second set of experiments focuses on benchmarking
the MQTT broker VNF that is a central part of the use case
presented in Section III and commonly used in smart manufac-
turing scenarios. This VNF is realised by a container running
the Mosquitto 1.6.2 [37] broker. To stimulate the broker, we
use the MQTT load generator Malaria [38] configured to test
the VNF with two different message sizes (10 bytes and 10,000
bytes) as well as with three different MQTT QoS levels (0, 1,
2; 2 corresponds to the highest level). During the experiment,
the CPU time available to the VNF container is changed (10 %
to 100 % step size 10 %) and each configuration is again tested
for 10 minutes. We record 93 different time-series metrics
resulting in a total of 1.67 million data points.

B. Profiling Analysis Results

Based on the benchmarking results, we have executed a
set of analysis processes, aiming mainly at realising resource
efficiency analysis of both VNFs. The overall analysis has
been realised by fetching the required data from the collected
monitoring metrics in the time-series database and triggering
the relevant analysis services on behalf of the Profiler.

In the case of the intrusion detection system (IDS), we have
tried to identify the main metrics that affect the performance
of the Suricata 4.0 VNF. Initially, we analysed correlation
in a subset of the available monitoring metrics for all the
experiments with malware traffic and small ruleset, produc-
ing the correlogram shown in Figure 5. The subset of the
examined metrics include resource usage metrics (e.g. cpu
usage, memory usage, incoming/outgoing traffic) and VNF-
specific metrics (e.g. detected alerts, examined flows, decoded
packets). The main objective is to get insights regarding
correlations among metrics that may not be easily observable.
High correlation values can lead to further examination of the
relationship among the considered metrics and the associated
effect on performance aspects.

A set of positive and negative statistically significant corre-
lations are identified between resource usage and VNF-specific
metrics. For instance, high positive correlation is identified
between the CPU usage and the traffic served by the VNF,
while small negative correlation is identified between the
memory usage and the number of produced alerts. Such an

Fig. 5. Correlogram with selected Suricata monitoring metrics.

insight led us to examine the relevant relationships based on
linear regression models. A series of linear regression analysis
processes has shown that Suricata 4.0 is a CPU-intensive VNF
as a function of the served network traffic (e.g. see Figure 6
for the experiments with 1 CPU core and big ruleset). The
type of the traffic – whether it is malware or normal traffic –
does not seem to significantly affect CPU usage. However,
it seems to affect memory usage, since in case of malware
traffic, higher memory usage (600MB on average) is noticed,
even with much smaller amount of network traffic compared to
the normal traffic trace (e.g. see Figure 7 for the experiments
with 1 CPU core and big ruleset). Higher memory usage
is also noticed in case of enforcement of the big ruleset
(200MB on average). Malware traffic refers to values from
0 to 40 Mbytes per second, while normal traffic refers to
values from 60 to 120 Mbytes per second in both Figure 6
and Figure 7. With regards to the allocation of multiple CPU
cores, it seems that there is no need for allocation of more
than 2 CPU cores for serving the considered traffic. The total
CPU usage, considering the availability of 12 CPU cores, is
depicted at Figure 8. Such insights are useful for planning
computational resources allocation for the specific VNF in the
real deployment of the considered use case in the Weidmüller
Group.

A similar process is followed for the MQTT broker, where
we have tried to identify the main metrics that affect the
performance of the Mosquitto 1.6.2 VNF. Mosquitto 1.6.2
turned to be a memory intensive VNF with regards to the
messages served, while no significant effect is noticed for
the CPU usage. In Figure 9, the relationship between the
memory usage and the messages sent by the Mosquitto 1.6.2
VNF is depicted, for the experiments with small size and QoS
equal to 2 that corresponds to the highest QoS level. A strong
and statistical significant linear relationship between the two
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Fig. 6. Linear Regression: CPU Usage vs Decoder Bytes (Suricata VNF).

Fig. 7. Linear Regression: Memory Usage vs Decoder Bytes (Suricata VNF).

Fig. 8. CPU Usage of the Suricata VNF.

metrics is identified. Such a relationship is stronger as the
QoS level increases. For instance, higher trend and correlation
between memory usage and packets served is noticed in case
of QoS value 2 and small packet size (adjusted Rsquared value
0.9 for QoS 2, 0.55 for QoS 1 and 0.69 for QoS 0). Dropped
packets are also noticed only in case of QoS 2, notifying us
that more resources have to be assigned to the deployed VNF.
On the contrary, even if the the CPU time available to the
VNF container is changed (10% to 100% with step size 10%),
it seems that the maximum usage is close to 40%, providing
an insight that the provided resources can easily accommodate
the provided workloads (e.g. see Figure 10).

This smart manufacturing case study clearly demonstrates
how our proposed integrated benchmarking and profiling
methodology can be used to get detailed insights with regards
to the resource consumption trends of VNFs and NSs. These
insights lead to appropriate dimensioning of the reserved 5G
infrastructure as well as to the preparation of deployment and
runtime elasticity policies that can assure the provision of the
required network services performance.

Fig. 9. Linear Regression: Memory Usage vs Broker Messages Sent
(Mosquitto VNF).

Fig. 10. CPU Usage of the Mosquitto VNF.

C. Open data sets

We make the raw measurement data that has been produced
by our experiments and used for the presented evaluations
available as open data sets. This allows the community to
utilize our results for their own research, e.g., to test novel
big data analysis approaches for the 5G domain. All data sets
are published as part of our SNDZoo project [39] under the
CC-BY-SA 4.0 license.

VI. CONCLUSIONS

In this paper, we detailed an integrated solution for bench-
marking and profiling 5G-oriented vertical applications, along
with a use case applied in a smart manufacturing industry.
The proposed workflow combines the design and execution
of benchmarking experiments, along with the analysis of the
collected data for extracting insights. In the presented case
study, the proposed approach is applied, leading to a set of
resource efficiency outcomes for two VNFs that are part of
the deployed network services. These outcomes helped us to
prepare optimal deployment plans in the smart factory setting,
as well as to provide feedback for the design of runtime
policies to automatically and proactively allocate resources in
case of high workloads, considering the identified capacity
limits.

In our next steps, we plan to work on the development
and evaluation of reinforcement learning models that can
support automated management of scaling actions of VNFs
as well as further orchestration actions, taking as input results
from resource efficiency analysis. To achieve so, a definition
of a Markov Decision Process will take place representing
the performance goals of the orchestration environment, the
available actions for horizontal and vertical scaling and the
rewards that will guide a set of agents to predict on real
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time the optimal action to support. Furthermore, in the smart
manufacturing use case, we are going to apply time-series
decomposition and forecasting mechanisms over operational
data, aiming to get alerts for upcoming events that can be
used for proactive decision making.
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