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Abstract—Fifth generation (5G) mobile networks will lead to
a deep integration between networks and applications. Through
novel paradigms like Network Functions Virtualization (NFV)
and Edge Computing, new classes of heterogeneous application
services will be enabled to run close to mobile end-user
devices with zero-perceived latency and fully-cognitive dynamic
reconfiguration capabilities. Such “vertical” applications exhibit
diverse performance/scalability requirements, and will rely
on highly distributed, extremely virtualized, multi-tenant and
software-defined infrastructures. In such context, handling the
required operations in a scalable and dynamic fashion will
be of paramount importance. A specific aspect, addressed by
Software Defined Networking (SDN), regards the provision
of suitable communication channels, once resource allocation
mechanisms have performed the most efficient deployment of
Virtual Network Function (VNF) instances, and VNF chaining
needs to be implemented to enable network services. In this
respect, this paper introduces the Multi-Cluster Overlay (MCO)
network paradigm: a tunnel-less SDN scheme for scalable
realization of Virtual Tenant Networks (VTNs) across the 5G
distributed infrastructure, able to support (bulk) migrations of
software instances among geo-distributed computing resources
in a seamless and effective fashion. Numerical simulation and
experimental results show that the MCO achieves up to over
one order of magnitude smaller number of forwarding rules
than other state-of-the-art SDN mechanisms, while also assuring
high performance during reconfiguration operations.

Index Terms—Edge Computing, 5G, SDN, Mobility

I. INTRODUCTION

EDGE Computing paradigms are gaining momentum in the
core 5G technology specification, as they bring cloud-

native applications closer to end-users and network-connected
“things”, enabling new classes of services with challenging
performance/operating requirements. This reduction in the
networking scope of user applications (or, at least, of some of
their application service components) is instrumental to meet
the stringent needs of radically new vertical sectors, in the
fields of Industry 4.0, e-Health, Smart Cities, and Electrical
Grids, among others, to be supported by the upcoming 5G
technologies.

Telecommunication infrastructures are evolving into a sort
of geo-distributed datacenter with advanced virtualization
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and computing capabilities, able to host both network
and application software instances from multiple tenants.
Computing resources will be provided by resource-constrained
facilities, placed at various levels of the network [1]–[3].

At the same time, cloud-native applications have been
evolving towards software architectures to boost and embrace
modularity. State-of-the-art applications are composed by a
large number of Virtual Objects (VOs), i.e., “microservices”
[4] embedded into various execution containers (e.g., Virtual
Machines (VMs), Linux Containers, etc.), and interconnected
through virtual network topologies to enable even more
complex Service Chains (SCs) [5]. An application orchestrator
is used to dynamically manage the lifecycle of each software
instance and of its virtual connectivity to conform with the
application-level workload and requirements [6].

Thanks to their modularity, cloud-native applications are the
perfect counterpart to be “vertically deployed” onto 5G-ready
infrastructures: VOs can be placed into the geo-distributed
computing facilities close to User Equipment (UE) [7],
and migrated from a datacenter to another as UEs move,
in order to provide seamless user experiences. Moreover,
depending on the nature of the application, VOs could be
differently tolerant to the end-to-end latency, and hence, to
their proximity to UEs. Thus, it is reasonable to assume that
each VO is associated to a Service Level Agreement (SLA),
defining its Quality of Service (QoS) requirements, which
can be used to select its placement in the network. Obviously,
the tighter the SLA proximity requirement of a VO is, the
more frequently it might be migrated among datacenters as
the UEs move, causing infrastructure reconfigurations. In
addition, users can access multiple Edge applications, which
might be provided by different tenants.

The role of Software-Defined Networking (SDN)
technologies [8], such as OpenFlow (OF) [9], becomes crucial
in this challenging scenario. SDN not only offers effective and
flexible means for isolating Virtual Tenant Networks (VTNs),
but also the possibility of supporting SC reconfigurations in
an effective and seamless fashion. Particularly, during VO
migrations, SDN is well-known to fit re-routing mechanisms
that would avoid any network-induced performance drawbacks
(e.g., packet losses [10], delays due to reactive rebuilding of
switching tables [11], encapsulation overhead [12]), which
typically occur in legacy Layer-2/3 networks [13].

In this paper, we propose the Multi-Cluster Overlay (MCO),
an SDN-based mechanism specifically designed to realize
wide-area VTNs and effectively support dense deployments of
mobile VOs at the network edge in a highly scalable fashion,
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TABLE I: Main acronyms.

BN Back-end Network PN Personal Network

L2 Layer-2 SC Service Chain

MCO Multi-Cluster Overlay VO Virtual Object

OF OpenFlow VTN Virtual Tenant Network

as well as to relax any (resource/functional) requirements at
the SDN switches in the network infrastructure. As better
discussed in the remainder of this paper, the MCO provides
the following main advantages with respect to state-of-the-art
SDN mechanisms: (i) overlay isolation through tunnel-less
communications [14] (i.e., non-overlapping OF rules among
different overlays without the use of resource-hungry tunneling
protocols); (ii) intrinsic support for distributed computing
facilities (i.e., overlay connectivity is provided inside and
among datacenters at the network edge); (iii) clustering of VOs
with similar SLA requirements to boost scalability through VO
aggregation, and to enable a more abstracted and agile overlay
network control; (iv) efficient network support for single and
bulk VO seamless live migrations (i.e., no network-induced
packet loss); (v) low infrastructure-level requirements (i.e.,
simple and mandatory OF filters and actions, as well as
Layer-2 (L2) addressing criteria); (vi) high performance (i.e.,
optimal/close-to-optimal traffic paths, low computational
overhead); and (vii) high scalability, by significantly reducing
the number of OF rules (and entries in the switch forwarding
tables) in the overlay implementation, as well as the number
of rule updates in case of bulk VO migrations.

An initial version of this work was presented in [15], in
which the concept of VO clusters is first introduced, and base
unicast connectivity is discussed. Here, we further advance
the contribution by incorporating rules for broadcast/multicast
forwarding, fixed and mobile access terminations, as well as
for seamless migrations of VOs. A use case on virtualized
Personal Networks (PNs) under the framework of the INPUT
project [16] is also presented, and considered as basis for an
experimental testbed and experimental results.

The remainder of this paper is organized as follows.
Section II introduces related work and highlights the paper
positioning in this context. Section III describes the MCO
L2 connectivity and addressing schemes. Section IV and
Section V discuss the MCO OF forwarding rules, and the
rule updates for seamless migrations, respectively. Section VI
introduces the metrics considered in the evaluations.
Numerical and experimental results are then presented in
Sections VII and VIII, respectively. Finally, conclusions are
drawn in Section IX. For a quick guide on the main acronyms
used throughout the paper, refer to Table I.

II. RELATED WORK

As regards the efficient management of VOs and traffic
steering in SDN, a large part of related work (e.g., [14],
[17]–[20], among others) focused on a single datacenter. In
this respect, the MCO approach provides a broader scope, by
explicitly addressing multiple geo-distributed datacenters and
their wide-area interconnection (an essential characteristic in
the Mobile Edge Computing environment).

In the framework of Network Functions Virtualization
(NFV) and Service Functions Chaining (SFC), there is a vast
literature considering the problems of Resource Allocation
and Network Functions Placement. In particular, [21]–[27]
deal with resource allocation and VM placement, also with
respect to QoS and SLA compliance. More recent works
[28]–[33] treat the problem of Virtual Network Function
(VNF) placement and chaining, taking into account various
characteristics for optimality, and also considering user
mobility in some cases. In particular, [32] studies the VNF
placement problem for the optimal SFC formation across
geographically distributed clouds, and models both link
delays and computational delays in the formulation of the
optimization problem. Further works [34]–[39] extend the
consideration to the specific mobile wireless networking envi-
ronment, also in its evolution toward 5G and network slicing.

It is worth noting that the MCO approach we consider here
is complementary to the placement and chaining problems.
By exploiting SDN configurability, we address the provision
of suitable communication channels, once resource allocation
mechanisms have performed the most efficient deployment
of VNF/VO instances, and VNF/VO chaining needs to be
effected to implement network services. In other words, we
assume the deployment of VNFs/VOs to have been set in
place by means of the above-cited optimization mechanisms,
and we aim to provide their interconnection within and among
the distributed datacenters, in order to allow any required
chaining and the capability of maintaining the connectivity
whenever edge resources need to be migrated to follow
the user mobility and comply with the resource proximity
imposed by QoS requirements. Though in a different context,
the problem we address presents some similarity with the
server selection considered in [40], where the selection
problem is transformed into an optimal routing one.

III. MULTI-CLUSTER OVERLAY NETWORKS

We consider a scenario where users have access to phys-
ical/virtual objects through geo-distributed VTNs and the set
of datacenters D in the network. Objects are accessed through
their physical (fixed/mobile) and virtual network endpoints.

A tenant δ ∈ ∆ is associated to a VTN, implemented as
an MCO network Qδ – a sort of private overlay specifically
designed to provide L2 interconnection among its endpoints,
including the user premises physical equipment deployed in
the home (hu – which can be understood as the gateway to
a fixed home/enterprise network), and/or connected through
mobile access (set Mδ), as well as the set of VOs (Vδ) hosted
within a subset of datacenters (Dδ ⊆ D).

Endpoints in Qδ are given by
F (Qδ) , {ϕ(v),∀v ∈ hu ∪Mδ ∪ Vδ}, where ϕ(v) is a
function providing the current position of the (physical/virtual)
object v as a switch-port pair. It is worth noting that the
endpoints are terminations both towards the network edge and
towards execution containers in D. Generally, a VO v can
be hosted by any datacenter d ∈ D, and VOs must be able
to migrate across servers of the same datacenter, or across
different datacenters.
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Fig. 1: Physical and logical view of an MCO network owned
by a single user.

To reflect the peculiarities above, Qδ is organized into
N clusters of VOs that are identified with cluster centers,
{c0, . . . , cN−1} – each one mapped to a datacenter gateway
switch in the Telecom infrastructure. For instance, Fig. 1
illustrates the physical and logical view of an MCO network
owned by user u, having 4 cluster centers and 13 endpoints
(i.e., 10 VOs, home hu and mobile access Mδ = {m1

u,m
2
u}

terminations).
The set Vδ,n ⊆ Vδ corresponds to the VO cluster bound

to the center cn. If Vδ,n is hosted in the datacenter d,
then cn maps to its gateway switch id (i.e., idn ≡ id,
d ∈ Dδ : cn 7→ id). Without loss of generality, we assume
henceforth that each datacenter has a single gateway switch
id, ∀d ∈ D, on which (multiple) centers can be mapped, in
order to simplify the representation.

Although each VO v belongs to a single cluster in Qδ , it is
important to note that other VO interfaces may be associated
with cluster centers of Back-end Networks (BNs), which are
essential for some data handling operations. Without loss
of generality, we will focus on Qδ’s connectivity in the
discussion for easy presentation, but PN-BN interactions will
be covered in the experiments.

A. Overlay Connectivity

We build the L2 connectivity among endpoints in Qδ
on the basis of paths and shortest-path trees, where each
physical/virtual OF switch along a path constitutes a hop.

By definition, the shortest-path tree SPT (r, L) is the union
of the (shortest) paths P(l, r) from each leaf l ∈ L to the root
r, where P(l, r) is the optimal sequence of edges and hops
from l to r. For a given P(l, r), two edges ei, eo are defined
on each of its hops h, and collectively as ξ , {ei, eo}. The
direction of the flow (i.e., towards the leaf/root) is indicated
by i/o, respectively.

Considering that edges are mapped to distinct ports on a
switch, the terms ports and edges will be used interchangeably
hereinafter. From the perspective of paths, however, an edge
e can also be defined by the pair of vertexes at its endpoints,
which is given by the function vertex(e).

Suppose that the datacenter d ∈ Dδ hosting the VO cluster
bound to the center cn houses the sets Sd of servers and Id of
OF switches. Inside d, VOs in the set Vδ,n are interconnected
according to the shortest-path tree SPT (idn , Vδ,n), with the
gateway switch idn being the root and the VOs v ∈ Vδ,n being

Fig. 2: Overlay network addressing scheme and possible
mapping on Ethernet 48-bit MAC addresses and IEEE 802.1Q
VLAN tags.

the leaves. The servers and intermediate switches involved
are given by the subsets Sδdn ⊆ Sd and Iδdn ⊆ Id, respectively.

SPT (idn , Vδ,n) , ∪∀v∈Vδ,n{P(v, idn)} (1)
Note that, over time, multiple cluster centers of the same

overlay Qδ may be mapped on the same gateway switch id.
Consequently, for each datacenter d, the internal connectivity
for Qδ will then involve all VOs v ∈ V dδ , where V dδ ,
∪∀cn 7→idVδ,n, realized by the shortest-path tree SPT (id, V

d
δ ).

The servers and intermediate switches involved are then given
by Sδd , ∪∀cn 7→idSδdn and Iδd , ∪∀cn 7→idIδdn , respectively.

Conversely, the interconnection among the centers
c0, . . . , cN−1 of Qδ is given by the shortest-path trees Qcnδ ,
∀n ∈ {0, . . . , N − 1}, with the root being idn and the leaves
being idm , ∀m ∈ {0, . . . , N − 1}, m 6= n.

Qcnδ , SPT (idn , {idm}) (2)

B. Layer-2 Addressing

Today’s virtualization hypervisors allows the association of
(customized) locally administered MAC addresses to virtual
network interfaces. We exploit this capability to configure
MAC addresses in a form convenient for flow identification
inside/among overlays, as well as for high-speed rule
matching in OF hardware (HW) and software (SW) switches.

As illustrated in Fig. 2, the MCO forwarding rules are
designed based on the matching of Ethernet 48-bit MAC
addresses [41] (and optionally on IEEE 802.1Q VLAN tags
[42]). The MAC address is partitioned into three fields – from
the most significant bit, there is the 22-bit Overlay ID (i.e.,
3 Bytes minus the 2 flag bits for universal/local (U/L) and
individual/group (I/G) addresses), the 8-bit Center ID, and the
16-bit Host ID. When a VLAN tag is also used, the Overlay
and Host IDs can have lengths within the ranges [22,34] and
[16,24] bits, respectively. Such configurations are particularly
convenient for simple OF matches, considering that OF 1.3.1
[9] defined matching of 48-bit MAC addresses with 1 to 6
Bytes masks at a step of 1 Byte, and only supports precise
matching of VLAN tags.

IV. FRAME FORWARDING RULES

Consider the subset of datacenters Dδ ⊆ D that host one
or more cluster centers (i.e., Dδ , {∀d ∈ D : ∃cn 7→ id}).
The virtual topologies inside and among d ∈ Dδ that define
the overlay connectivity are given by a number of OF rules
installed on every crossed switch, for each VO in Vδ . The OF
rules are defined according to two complementary algorithms
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TABLE II: Key notations.

Parameter Description

P(l, r) the optimal sequence of edges and hops from the leaf
l to the root r

ei (eo) the edge at a generic hop h ∈ P(l, r) towards l (r)

ξ the set {ei, eo} of edges at a generic hop h ∈ P(l, r)

vertex(e) the function that returns the pair of vertexes at the
endpoints of an edge e

SPT (r, L) the shortest-path tree with r being the root and L being
the set of leaves, SPT (r, L) , ∪∀l∈L{P(l, r)}

Sδd ⊆ Sd the subset of servers in d that are involved in the MCO
network Qδ

Iδd ⊆ Id the subset of OF switches in d that are involved in Qδ

idn the gateway switch id of d ∈ Dδ on which the cluster
center cn is mapped

ϕ(v) the function that returns the position of the (physi-
cal/virtual∗) object v as a switch-port pair (iv, pv)
∗a VO is denoted by v

V dδ ⊆ Vδ the subset of VOs in Qδ that are hosted in d ∈ Dδ
Vδ,n ⊆ Vδ the subset of VOs in Qδ that are bound to cn

Qcnδ the wide-area shortest-path tree with the gateway
switch idn being the root and the other gateway
switches idm , m ∈ {0, . . . , N − 1}, m 6= n, being
the leaves, Qcnδ , SPT (idn , {idm})

pin the switch port where a frame to be matched enters

out the list of ports where a frame matching the OF rule
has to be sent

dlsrc (dldst) the source (destination) MAC address 1

– one acting inside each datacenter, and the other on the
wide-area infrastructure. The rationale behind this division is
to isolate as much as possible the number of network recon-
figurations during VO migrations or changes in the mapping
between overlay and underlay resources. Independently of
such implementation, the rules will be described according
to their forwarding type (i.e., unicast, broadcast/multicast).

A. The OpenFlow Notation
The MCO is designed to use simple and mandatory

primitives defined in the OF 1.3.1 protocol [9] and widely
supported by commercial switches.

In this paper, the OF rules are expressed in the following
form:
p→ lx, if match1 && match2 && · · ·&& matchy ⇒

{action1, action2, . . . , actionz}
The rule priority is given in the first part, with lower x
values indicating higher priorities. The second part holds the
matching fields and associated actions. Exact and wildcard
matches will be represented with the operators ‘≡’ and
‘≡pfx’, respectively. Other notations used in the OF rules
matching fields and action list are defined in Table II, together
with a list of key notations.

B. Unicast Forwarding
The following couple of OF rules govern the unicast

forwarding inside the datacenter d, for each VO v ∈ V dδ :
p→ l1, if dldst ≡ addr(v)⇒ out→ ei (A)

1Based on Open vSwitch (http://openvswitch.org/) command-line syntax.

Fig. 3: Example of internal datacenter connectivity and unicast
frame forwarding among VOs of three co-located clusters.

p→ l3, if dlsrc ≡ addr(v)⇒ out→ eo (B)

Both are installed ∀h ∈ P(v, id), h 6≡ id, while only the rule
(A) on id. With these, “precise” matching of v’s L2 address
with the destination and the source L2 addresses, respectively,
can be achieved.

In more detail, if a frame generated by v is directed to
another VO v̂ ∈ Vδ,n, the frame matches both rules (A) and
(B), i.e.:

p→ l1, if dldst ≡ addr(v̂)⇒ out→ ei
p→ l3, if dlsrc ≡ addr(v)⇒ out→ eo

in the first interconnection switch i∗ where P(v, id) and
P(v̂, id) intersect. Such case is illustrated in Fig. 3 (i.e., on
the switches h1 and h2, for the frames generated by v2 for
v1 and v3, respectively). While searching for i∗, rule (B)
directs frames towards id, independently of their destination.
Then, on i∗, rule (A) will be selected for its higher priority,
consequently redirecting the frames towards the destination
VO (i.e., v1 and v3 in the example). Furthermore, it can be
noted that these rules allow direct communication between
VOs of different clusters (i.e., v2 and v3 in Fig. 3).

When the destination VO is not in the same datacenter,
frames will eventually reach id, and the forwarding behaviour
will be driven by the wide-area algorithm thereon.

In the wide-area, the proposed algorithm relies on wildcard
masks matching the Overlay and Center IDs (i.e., id(δ, cn)),
rather than the precise matching of L2 addresses. This
approach is particularly beneficial in the case where a
significant number of VOs is clustered in each center.

The wide-area connectivity is realized through a “fully-
meshed” overlay among N cluster centers. The algorithm
works by obtaining the tree Qcnδ , ∀cn ∈ {c0, . . . , cN−1},
according to Eq. (2). The following rule is installed:

p→ l3, if dldst ≡pfx id(δ, cn)⇒ out→ eo (C)
This rule aims at directing unicast traffic from any other
center cm (mapped to idm ∈ Qcnδ , m 6= n), towards the
gateway switch idn of the datacenter hosting the destination
VO v ∈ Vδ,n.

The wide-area unicast forwarding is designed to use the
Qcnδ tree rooted at the destination gateway switch to achieve
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Fig. 4: Example of broadcast/multicast packet forwarding from
v1 to other VOs v ∈ Vδ in the same datacenter.

simpler rules, considering that there is only one path (and
port) on the switches along P(idm , idn), m 6= n, that is part
of Qcnδ . Upon reaching idn , the forwarding behaviour is again
driven by the algorithm inside the datacenter.

C. Broadcast/Multicast Forwarding

Since broadcast and multicast forwarding rules are
identical, apart from a difference in the matching MAC
address, they will be treated as one in this paper. In order to
guarantee isolation among the VTNs, IEEE 802.3 broadcast
and multicast addresses are translated into overlay specific
addresses by the first switch encountered by the packets (i.e.,
the one in the hypervisor).

Inside the datacenter d, the mechanism proposed relies
on the same shortest-path tree SPT (id, V

d
δ ), as shown in

Fig. 4. A number of rules corresponding to the number of
configured Qδ cluster centers (N ) is installed on every hop
h ∈ SPT (id, V

d
δ ).

If the hop h 6≡ id is not directly connected with any VO
v ∈ V dδ (i.e., h does not correspond to the hypervisor switch
in a server), the following type of forwarding rule is installed:

p→ l2, if dldst ≡ baddr(cn)⇒ out→ E (D)

where E is the set of all the edges at h belonging to
SPT (id, V

d
δ ). On h ≡ id, the forwarding behavior internally

to the datacenter will correspond to the one in the rule (D).
However, as id is part of both the datacenter and wide-area
networks, a rule covering the two portions of the overlay is
applied:

p→ l2, if dldst ≡ baddr(cn)⇒ out→ Ĕn (E)

where Ĕn is the set of edges at the gateway switch id,
d ∈ Dδ : cn 7→ id, with elements e ∈ {Qcnδ ∪ SPT (id, V

d
δ )},

hence considering both internal and wide-area connections.
In case h 6≡ id is directly connected with at least one VO

v ∈ V dδ , the rule should take into account the translation
between the universal IEEE 802.3 broadcast address b′addr and
the ones used in the overlay baddr(cn), ∀n ∈ {0, . . . , N − 1}.
Particularly, let h be the hypervisor switch of the server
s ∈ Sd, and let the set V d,sδ ⊆ V dδ comprise all VOs v ∈ Vδ
residing in s. For each cluster center cn, the following couple
of rules is installed on h:

p→ l2, if dldst ≡ b′addr && pin ≡ En ⇒[
dldst := baddr(cn), out⇒ E ∩ E0 ∩ . . . ∩ EN−1

out⇒ E0 ∪ . . . ∪ EN−1

]
(F)

p→ l2, if dldst ≡ baddr(cn)⇒[
out⇒ E ∩ E0 ∩ . . . ∩ EN−1

dldst := b′addr, out⇒ E0 ∪ . . . ∪ EN−1

]
(G)

where En is the set of edges at h that directly connects to
VOs bound to cn, i.e.,

En , {e : e ∈ E ∧ vertex(e) ∩ Vδ,n 6= ∅} (3)
As illustrated in Fig. 4, rule (F) handles broadcast packets

originating from VOs in the datacenter and addressed to
b′addr ≡ FF : FF : FF : FF : FF : FF. In case of multiple
VOs connected to the same hypervisor switch of the broadcast
source, it will forward the broadcast frame to them without
any change in the frame. Rule (F) is also in charge of
translating b′addr into one of the overlay broadcast addresses
baddr(cn), n ∈ {0, . . . , N − 1}, and of forwarding the
modified frame to the rest of SPT (id, V

d
δ ).

Conversely, when a frame arrives at switches directly
connected to VOs (s2 and s3 in Fig. 4), the rule (G) is
applied. Such rule will forward a copy of the unmodified
frame onto links interconnecting further switches, and it will
remap the broadcast address back to b′addr in order to deliver
the frame to all the VOs directly connected.

At the wide-area portion of the MCO network, rule (E) can
also be applied to make broadcast traffic generated by VOs
bound to cn reach all the other hosts in Qδ , as the set Ĕn will
only include edges e ∈ Qcnδ on wide-area switches i ∈ Qcnδ ,
i 6≡ idn . In contrast to unicast forwarding, the Qcnδ tree is
crossed downstream from the root (which is the origin of
broadcast traffic, and has a prefix id(δ, cn)) to the leaf nodes.

D. Fixed and Mobile Access Terminations
A network termination is defined to be a port of a switch

in the network, where traffic transmitted/received by remote
devices (in the home/enterprise network or connected through
the radio access) is not carried on top of access carrier
protocols/point-to-point tunnels. For this purpose, network
terminations can be understood as the output ports of nodes
performing the authentication and authorization on traffic
coming from the wireline/radio access. Without loss of
generality, the home and mobile access terminations of the
users are supposed to be mapped on the Qδ cluster centers
ch, cm ∈ {c0, . . . , cN−1}, respectively.

It is worth noting that the proposed algorithm can support
multiple mobile terminals, but only a single wireline/home
termination. For the sake of simplicity, we will describe the
single user case with home termination hu and only a single
mobile device, whose termination is represented by mu.

In the case of the home termination, the algorithm has been
specifically designed in order to support physical hosts in
the domestic LAN without the need of translating their MAC
addresses. This feature has been made possible by adding
some further rules for: (i) making the traffic originating
from/destined to the home LAN reach the center ch; and
(ii) collecting the traffic addressed to devices in the home
from all the other cluster centers in Qδ .

Regarding the interconnectivity between ch and hu, the
shortest path Ph is calculated, and for each hop h ∈ Ph,
h 6≡ idh (i.e., ch 7→ idh), the following rules are applied:

p→ l4, if dlsrc ≡pfx id(δ)⇒ out→ ei (H)
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p→ l4, if dldst ≡pfx id(δ)⇒ out→ eo (I)

On idh, only rule (H) is configured, since the node already
has rules of type (C) for reaching any VO bound to other
centers in Qδ . On the other hand, on the switch ih hosting the
termination hu on the port ph, the following rule is applied
instead of rule (I):
p→ l4, if dldst ≡pfx id(δ) && pin ≡ ph⇒ out→ eo (J)
In order to support broadcast traffic to/from the home

termination hu, rule (D) is installed for each hop h ∈ Ph,
h 6≡ ih, and the following couple of rules on ih:
p→ l2, if dldst ≡ baddr(cn)⇒ dldst := b′addr, out→ ei

(K)
p→ l2, if dldst ≡ b′addr ⇒ dldst := baddr(cn), out→ eo

(L)
Rules (K) and (L) are designed based on the assumption that
ih is a legacy switch that only hosts home terminations hu,
and not VOs v ∈ V dhδ .

Passing to the mobile connectivity, we refer to the 5G 3GPP
Release 15 specifications [43]. In such a case, UEs could
be exposed by the Network Exposure Function (NEF) and
terminated by specific dedicated ports of User Plane Functions
(UPFs), which shall run on the same datacenters hosting VOs.
In this sense, we suppose that ϕ(mu) ≡ (im, pm), where im
is the switch connecting to the UPF instance serving user u’s
terminal and pm is the port on im connected to mu.

As in the previous cases, in order to connect mu to the
center cm, the shortest path Pm among them is calculated
and rules (A) and (B) are installed on each hop h ∈ Pm,
accordingly, except on the switch im, on which the following
rules will be installed:
p→ l2, if dldst ≡ addr(mu)⇒ dldst := addr′(mu),

out→ pm (M)
p→ l2, if pin ≡ pm ⇒ dldst := addr(mu), out→ eo (N)

where addr(·) and addr′(·) are functions that return the
overlay and physical L2 addresses, respectively.

Broadcast forwarding internal to the shortest-path tree
SPT (idm

, V dm

δ ) is supported by the same rules inside the
datacenter (i.e., rule (D) is installed on each hop h ∈ Pm,
h 6≡ idm

, then the rules (F) and (G) on the switch im). On
idm

, rule (E) is installed to cover both internal and wide-area
interconnections.

V. SEAMLESS MIGRATION SUPPORT

The MCO is designed to efficiently support the seamless
migration of VO(s), which might be decided by upper-
lying orchestrators reacting upon specific events (e.g., UE
handovers), or by planning the placement in advance (e.g., by
means of probabilistic models identifying mobility patterns).
When such reallocation is decided, it has to be performed by
migrating the VO software instances, and by reconfiguring the
network to maintain full connectivity before, during and after
the software migration process. Only if these two operations
are fulfilled with negligible service interruption times, the mi-
gration is considered to be “seamless”. Although the software
migration can be handled through various advanced software

mechanisms (spanning from the copy of the entire execution
container – i.e., migration of a VM or of a container – to the
transfer of a limited set of status information – e.g., external
database caches used by cloud-native software instances),
network-induced performance drawbacks are still inevitable.

Legacy L2 Ethernet networking can incur further delays,
due to reactive re-building of switching tables. SDN is
well-known to easily overcome such drawbacks, and to
enable seamless network reconfigurations during migrations
in an effective fashion.

Common approaches for minimizing the service interruption
time usually apply a two-step migration procedure [44],
summarized as follows.

Step 1: Before initiating the migration, network switch-
ing/routing rules are temporarily configured in order to dupli-
cate packets destined to the VO(s) on the move towards both
“old” and “new” positions. Moreover, in order to guarantee the
correct routing of the traffic generated from the new position(s)
upon migration completion, also the new forwarding rules are
calculated and configured on the involved nodes.
Step 2: Upon completion of the migration process, network
switching/routing rules are updated in order to remove the
connectivity to/from the old position(s), and maintain only the
connectivity to/from the new position(s).

The MCO supports the aforementioned procedure for two
types of migration: (i) VO migration: this only involves one
VO, which is being migrated between two servers of the same
in-network datacenter; and (ii) center migration: this consists
of a bulk migration of all the VOs bound to a cluster center
between two in-network datacenters. These two types have
been designed to support reconfiguration of the underlying
infrastructure and of overlying services, respectively.

Particularly, the migration of single VOs between
two servers of the same datacenter is a primitive operation
mandatory to allow the maintenance of servers, or the dynamic
consolidation of datacenter resources (e.g., for reducing the
energy consumption by making idle servers entering standby
modes). This is especially useful for operations at the
infrastructure level, and it should be as transparent as
possible to the service level (i.e., to the operation levels and
performance provided by services running on VOs).

On the other hand, bulk migration of VOs has been defined
to adapt the location of services in an efficient and scalable
way. Through the migration of a VO cluster, it may be possible
to reduce the end-to-end delay between the services running
on such VOs and the end-user devices. For instance, if an
end-user accesses services through his/her smartphone, center
migrations can be useful to move clusters of VOs with similar
QoS requirements closer to his/her mobile termination, also
during hand-over from one network access point to another.

It can be noted that, in case the upper-lying orchestrators
perform probabilistic placement of VO copies in the network,
the MCO mechanism can support Step 1 operations to
distribute the VO/cluster traffic towards multiple positions
at the same time, and Step 2 operations to prune all the
unnecessary endpoints.
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(a) before migration

(b) after migration

Fig. 5: Example of VO migration between two servers in the
same in-network datacenter.

A. VO Migration

Let v be the VO to be migrated from the server sold to
snew, as illustrated in Fig. 5. We suppose that cn 7→ id is
the cluster center to which v is bound, and sold, snew ∈ Sd,
d ∈ Dδ . Moreover, pold and pnew are the ports that connect
v to the hypervisor switches in sold and snew, respectively.

As previously sketched, this type of migration only involves
the overlay configuration inside a single datacenter, and no
operations are needed at the backbone level. Therefore,
Steps 1 and 2 of the migration procedure only concern the
rules acting inside the datacenter, as detailed below.
S1: Let ĥ be the switch where the paths P(vsold , id) and
P(vsnew , id) intersect, where vs is the instance of v in
the server s ∈ {sold, snew}. Since there are two paths
(i.e., P(v, ĥ) ∈ {P(vsold , ĥ),P(vsnew , ĥ)}) with the same
matching rules for v, ĥ will also have two edges towards v,
ei ∈ {pĥold, pĥnew}, as shown in Fig. 5a – in effect, duplicating
the traffic.

On ĥ, rule (A) is updated to (A′), by adding pĥnew as output
interface – this allows unicast frames destined to v to be
forwarded to both pĥold and pĥnew. Then, rules of the type (A)
and (B) are configured along all the hops h ∈ P(vsnew , ĥ).

As regards broadcast traffic, we proceed in a similar
fashion, by first identifying the switch ȟ where P(vsnew , id)
intersects the shortest-path tree SPT (id, V

d
δ ). If ȟ does not

coincide with the hypervisor switch of snew: (i) the rule (D)

Fig. 6: Example of center migration between two datacenters.

(or rule (E), if ȟ ≡ id) on ȟ is updated by adding pȟnew to
the output interfaces, where pȟnew is the port on ȟ through
which it is possible to reach v on snew; (ii) rule (D) is added
on each hop h ∈ P(snew, ȟ); and (iii) rules (F) and (G) are
added on snew’s hypervisor switch. If ȟ coincides with the
hypervisor switch of snew, only rules (F) and (G) are updated
by adding pȟnew to the set En of edges at ȟ that directly
connects to VOs that are bound to the center cn.
S2: This step aims at pruning the unicast and broadcast
connectivity towards the old position of v. For this purpose,
the rule (A′) on ĥ is updated back to (A) by removing the
output port pĥold, and rules (A) and (B) are removed from all
switches along P(vsold , ĥ).

Now, let ȟ be the switch where P(vsold , id) intersects the
shortest-path tree SPT (id, V

d
δ ), as illustrated in Fig. 5b. If

ȟ does not coincide with the hypervisor switch of sold, the
rule (D) (or (E), if ȟ ≡ id) on ȟ is updated, by removing
the port pȟold from the output interfaces. Moreover, rule (D)
is removed from all switches along P(sold, ȟ), as well as
rules (F) and (G) from the hypervisor switch of sold. On the
contrary, if ȟ coincides with the hypervisor switch of sold,
only rules (F) and (G) are updated by removing pȟold ≡ pold
from the corresponding set En (defined by Eq. 3).

B. Center Migration

Here we suppose that the VO cluster bound to the center
cn has to be migrated from the datacenter dold to dnew (i.e.,
cn 7→ idold and c′n 7→ idnew ), as depicted in Fig. 6. Unlike
single VO migrations, Steps 1 and 2 in this type of migration
concern the rules acting in both datacenter and wide-area
domains, as detailed in the following.
S1: In this step, the datacenter and wide-area portions of the
overlay are reconfigured for:
(i) bidirectionally propagating any frame exchanged among
VOs bound to cn (i.e., v ∈ Vδ,n) between idold and
idnew ; (ii) delivering packets from the other centers cm,
∀m ∈ {0, . . . , N − 1}, m 6= n, destined to cn towards both
datacenters dold and dnew.
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For this purpose, some rules of type (A) related to the
VOs bound to cn, in both dold and dnew, are modified in
order to make unicast frames destined to such VOs reach the
datacenter gateway. Particularly, rule (A′′) is derived from (A)
by setting the output interfaces to ξ – this allows traffic to flow
in either ei or eo directions of the path. Thus, rules of type
(A′′) are configured ∀v ∈ V d∗δ,n ∩ Vδ,n, d∗ ∈ {dold, dnew}, and
∀h ∈ P(v, id∗). On id∗ , however, rules of type (A) are retained
for forwarding of wide-area traffic destined to v. Rules of types
(B), (D), (F) and (G) are also configured accordingly in dnew.

In order to guarantee the correct traffic exchange
between VOs bound to cn in dold and dnew, the path
P(cn, c

′
n) ≡ P(idold , idnew) in the wide-area portion is

computed. Considering this path, the following rule is
installed on idold and idnew :
p→ l1, if dldst ≡pfx id(δ, cn) && pin ≡ pdc⇒ out→ ξ

(O)
and for each hop h ∈ P(cn, c

′
n) (e.g., h̄ as shown in the

example in Fig. 6), the rule:
p→ l2, if dldst ≡pfx id(δ, cn)⇒ out→ ξ (P)

In the former, specifying the input port as a datacenter
connection (pdc) avoids loops around this path.

On the other hand, the interconnection between the
cluster center c′n in idnew towards/from any other center cm,
∀m ∈ {0, . . . , N − 1}, m 6= n, is realized by identifying the
intersection switch ĥ between P(idold , idm) and P(idnew , idm).
On each hop h ∈ P(idnew , ĥ), as well as on idnew , the rule
(C) configured to match the prefix id(δ, cm) is installed,
allowing unicast frames from c′n to reach cm. In such a case,
no updates are required on ĥ, since from ĥ to any other
center cm the rules for the shortest-path trees Qcnδ and Q

c′n
δ

are the same (see Fig. 6).
Conversely, to reach c′n from cm, the rule (C) configured

to match the prefix id(δ, cn) is installed on each hop
h ∈ P(idnew , ĥ), and is updated on ĥ to (C′), by adding pĥnew
as output interface, duplicating traffic towards the sub-paths
P(idold , ĥ) and P(idnew , ĥ), as illustrated in Fig. 6.

As regards broadcast traffic, in order to assure the correct
delivery of frames generated by v ∈ Vδ,n in dold towards
dnew, and vice versa, the following rule is added to every
hop h ∈ P(idold , idnew):

p→ l1, if dldst ≡ baddr(cn)⇒ out→ ξ (Q)
Moreover, thanks to the rule (E) already present in idold ,
broadcast frames generated by v ∈ Vδ,n in dnew are
propagated to the other cluster centers through the shortest-
path tree Qcnδ , whose root is in idold .

Finally, rules of type (E) on wide-area switches are also
installed/updated for delivering broadcast traffic generated in
any other cluster center cm, ∀m ∈ {0, . . . , N − 1}, m 6= n.
In particular, a new instance of rule (E) configured to match
baddr(cm) as destination address is installed on every hop
h ∈ P(idnew , ȟ), where ȟ is the switch where P(idnew , idm)
intersects the shortest-path tree Qcmδ . On ȟ, the rule (E)
matching baddr(cm) is updated to (E′), by adding an output
interface towards the sub-path P(ȟ, idnew).
S2: Upon the completion of all the migration operations
∀v ∈ Vδ,n from the datacenter dold to dnew, this step is

activated to prune all forwarding operations to/from dold (at
least for what concerns the traffic related to the center cn).

To this end, rules of types (A) and (B) are removed
∀v ∈ Vδ,n, and ∀h ∈ P(v, idold). Also, the shortest-path tree
SPT (idold , V

dold
δ ) used for delivering broadcast messages

inside dold is modified accordingly, removing all the leaf
nodes (i.e., corresponding to v, ∀v ∈ Vδ,n) and related
sub-paths to them. These operations are consequently
reflected in the possible update and removal of the hops
h ∈ SPT (idold , V

dold
δ ) of rules of type (D), and/or (F) and (G).

As regards the wide-area connectivity, the rule (C) matching
id(δ, cn) is removed ∀h ∈ P(idold , ĥ), while the rule (C′)
on ĥ is updated back to (C), by removing the port pĥold
from the output interfaces. The shortest-path trees Qcmδ ,
∀m ∈ {0, . . . , N − 1}, m 6= n, are updated in a similar fash-
ion in the case where no other VO cluster is residing in dold.

Finally, the shortest-path tree Qcnδ is re-built, changing
its root from idold to idnew . Let Qcnδ and Q

c′n
δ be the

shortest-path trees calculated according to Eq. (2), with
idold and idnew as root nodes, respectively. The rule (E)
matching baddr(cn) is consequently: (i) removed from
hop h̃, ∀h̃ : h̃ ∈ Qcnδ ∧ h̃ /∈ Q

c′n
δ ; and (ii) added on

hop h̃, ∀h̃ : h̃ /∈ Qcnδ ∧ h̃ ∈ Q
c′n
δ . Thanks to the optimal

substructure property of the shortest paths composing Qcnδ
and Qc

′
n

δ , the resulting spanning tree obtained with the above
rule removals and additions will still be composed of the
shortest paths among idnew and any other cluster center cm,
∀m ∈ {0, . . . , N − 1}, m 6= n.

Note that this procedure cannot produce switching loops,
since the forwarding rules deliver packets only towards the
leaf nodes of Qcnδ and Qc

′
n

δ ; hence, the possible and transitory
presence of two root nodes could only produce duplicated
broadcast packets. Moreover, since the same VO can reside
in only one datacenter at a time, such duplicates can be
avoided by removing rules of type (O), (P) and (Q), just
before passing from Qcnδ to Qc

′
n

δ .

VI. SCALABILITY AND PERFORMANCE METRICS

In this section, we introduce the set of metrics considered
to evaluate MCO’s scalability and performance, along with
the different parameters used to understand their behaviour.

Regarding scalability, the key metrics that we considered
are two: the number of OF rules needed to set up an
MCO overlay, and the number of updates needed in case of
VO/cluster migration. This choice was mainly driven by the
fact that OF switches have finite-sized rule tables (usually in
the order of some thousands [45]), and that the number up-
dates/instantiations of OF rules directly affects the time needed
by the SDN controller to apply the network reconfiguration
to the involved switches (since each rule addition, deletion, or
update has to be signalled through a separate OF message [9]).

As regards the performance, path lengths have already been
evaluated in [15], demonstrating cases of path sub-optimality
when the edges have random asymmetrical weights. In
this work, the performance evaluation focuses on metrics
related to the L2 overlay connectivity instantiation (i.e., rule
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Fig. 7: Different datacenter depths η ∈ {1, 2, 3}.

calculation times) and center migration (i.e., rule update
calculation times) processes that give indications on MCO’s
computational overhead.

A. Scalability

The number of forwarding rules depends on the number
of VOs and switches involved in the overlay – and conse-
quently, on the geographical distribution and topology of the
datacenters, as well as the VO placement among them. For
this purpose, we consider three datacenter depths to repre-
sent the upcoming Edge/Cloud interplay using the number
of intermediate hops η between the VO and the datacenter
gateway switch, as illustrated in Fig. 7. The traditional three-
layer datacenter topology [46] of the Cloud (

...
d ) is supposed to

be represented by the datacenter depth η = 3, while the hetero-
geneity among Edge nodes (ḋ and d̈) by the depths η ∈ {1, 2}.
This is particularly useful in counting unicast forwarding rules.

On the other hand, the scalability of handling bulk
migrations between two datacenters is evaluated in terms
of the number of rule updates in the wide-area portion of
the overlay. This covers the rules installed/modified/removed
on idold , idnew , ∀h ∈ P(idold , idnew), and ∀h ∈
{P(idold , idm),P(idnew , idm)}, ∀m ∈ {0, . . . , N − 1}, m 6= n,
in performing a center migration.

1) Number of forwarding rules: The rules for unicast
(RU ) and broadcast (RB) forwarding are counted separately
in order to show their distinct behaviours – note that the
sum of these two components indicates the total number
of rules (R = RU +RB) needed to be installed for overlay
connectivity.
Unicast RU is simply the sum of the rules of types (A)–(C),
and is given by:

RU =
∑
n

(A)︷ ︸︸ ︷[
|Vδ,n|(ηdn + 1) +

(B)︷ ︸︸ ︷
|Vδ,n|(ηdn) +

(C)︷ ︸︸ ︷
(|Qcnδ | − 1)

]
=
∑
n

[
|Vδ,n|(2ηdn + 1) + |Qcnδ | − 1

]
(3)

where ηdn is the number of intermediate hops from a VO
v ∈ Vδ,n to the gateway switch idn , ∀n ∈ {0, . . . , N − 1}.
Broadcast RB , on the other hand, is obtained by summing
up the rules of types (D)–(G), as follows, ∀d ∈ D:

RB =
∑
d

(D)︷ ︸︸ ︷[
N(|Iδd | − 1) +

(F) and (G)︷ ︸︸ ︷
2N |Sδd|

]
+
∑
n

(E)︷ ︸︸ ︷
|Qcnδ |

=
∑
d

[
N(|Iδd |+ 2|Sδd| − 1)

]
+
∑
n

|Qcnδ | (4)

Considering that multiple cluster centers can be mapped to
the same gateway switch, the cluster/datacenter ratio may vary
over time – it would also be interesting to look at how the num-
ber of rules vary with this parameter, as we shall see later on.

2) Number of rule updates: For the sake of readability,
we decompose the number of wide-area rule updates (RMwa

)
into two components (i.e., RMwa

= R1
Mwa

+R2
Mwa

) that
correspond to the two-step seamless migration procedure.
Particularly, the number of rule updates in Step 1 is given by:

R1
Mwa

=

(O) – (Q)︷ ︸︸ ︷
2(|P(idold , idnew)|+ 1) +

∑
m

(C) and (C’)︷ ︸︸ ︷[
2(|P(idnew , ĥm)|+ 1)

+

(E) and (E’)︷ ︸︸ ︷
(|P(idnew , ȟm)|+ 1)

]
= 2(|P(idold , idnew)|+ 1) +

∑
m

[
2|P(idnew , ĥm)|

+ |P(idnew , ȟm)|+ 3
]

(5)

where ĥm (respectively, ȟm), ∀m ∈ {0, . . . , N − 1}, m 6= n
are the intersection switches between P(idnew , idm) and
P(idold , idm) (respectively, Qcmδ ). A similar expression is
obtained for the number of rule updates in Step 2:

R2
Mwa

=

(O) – (Q)︷ ︸︸ ︷
2(|P(idold , idnew)|+ 1) +

∑
m

(C) and (C’)︷ ︸︸ ︷[
2(|P(idold , ĥm)|+ 1)

+

(E) and (E’)︷ ︸︸ ︷
(|P(idold , ȟm)|+ 1)

]
= 2(|P(idold , idnew)|+ 1) +

∑
m

[
2|P(idold , ĥm)|

+ |P(idold , ȟm)|+ 3
]

(6)

with ȟm now being the intersection switch between
P(idold , idm) and Qcmδ .

Furthermore, we define the clustering index as the number
of VOs clustered in the center to be migrated, which is a
parameter useful in studying the behaviour of this metric.

B. Performance

The performance metrics considered in this work are
measurable from the timestamps generated by the MCO code.
For this purpose, it is necessary to run the MCO algorithm
over a given (emulated) Telecom infrastructure topology in
order to collect measurements.

1) Rule calculation times: As users subscribe to new
services, SCs are instantiated and added to their corresponding
PNs. In this process, the time it takes to calculate the rules
needed to be installed for the new SC gives indication on
the computational complexity of the MCO algorithm. The
behaviour of this metric is studied by considering different
service chaining scenarios.

2) Rule update calculation times: Then, as users move
around, center migration(s) may be initiated to meet the
desired QoS/QoE. In this process, the time it takes to calculate
the rule updates needed to perform a center migration gives in-
dication on the time overhead incurred by the MCO algorithm
in supporting seamless bulk migrations between datacenters.
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VII. NUMERICAL RESULTS

MCO’s scalability in terms of overlay implementation
and bulk migration support is evaluated through a series of
numerical simulations.

A. Simulation Framework

A simulation framework for a Telecom infrastructure
with 30 datacenters interconnected by 100 transit nodes is
implemented in Matlab. Datacenter depths η ∈ {1, 2, 3} (see
Section VI-A) are generated according to the probability
mass function fη = {0.6, 0.35, 0.05}, respectively. These
parameters have been chosen by taking inspiration from state-
of-the-art datacenter network architectures [46], as well as
from the analyses done in [47]. Letting T be the set of access
and interconnection switches, the logical interconnections
ET among the nodes t ∈ T are then generated randomly to
form a graph-based topology G(T, ET). Finally, based on the
resulting topology, a transit node t ∈ T is randomly chosen
for each d ∈ D, with constraint on the minimum number of
hops (Hmin) between any pair of datacenters (da, db) ∈ D,
whose value highly depends on the graph size and topology.
In this work, Hmin ≤ 3 is required in order to obtain a
solution, and the value Hmin = 3 is used to maximize the
topological distribution of datacenters.

20 runs with varying seeds are executed for each parameter
configuration to show the 95% confidence intervals in the
results, with each run corresponding to a unique infrastructure
topology.

B. Overlay Implementation

For unicast forwarding, the proposed approach (MCO)
is evaluated in comparison with three baselines – B1, B2
and B3. B1 and B3 basically correspond to the fully-meshed
and OpenStack cases considered in [15], respectively. In
more detail, B1 corresponds to installing a couple of exact
matching rules for each source-destination VOs in all the
crossed switches in the datacenter and wide-area networks;
this implies a “fully-meshed” OF connectivity among VOs,
since each involved switch will have rules for exactly
matching the MAC addresses of all VOs in the overlay. B2 is
equivalent to the previous case, but the flow table compression
proposed in [45] has been applied. The OpenStack baseline,
B3, corresponds to the scenario where only the hypervisor
switches are OF-enabled. In this case, the hypervisor switches
communicate through tunnels, rather than by means of explicit
OF rules on other interconnection switches. Thus, in B3, OF
rules are only hosted in hypervisor switches, and are designed
to work with exact matching “fully-meshed” connectivity (i.e.,
each hypervisor switch of the servers hosting a VO implements
explicit rules to/from any other VOs in the overlay). It is
important to note that conventional tunneling protocols used on
top of the OpenStack platform [48] also incur additional costs.

As regards broadcast forwarding, the baseline B1/2/3
corresponds to the case with a single overlay broadcast
address; hence, only one rule is installed on the switches
involved in Qδ – except on the hypervisor switches,
where two rules are installed for the mapping between the

TABLE III: Overlay implementation baselines.

Baseline Description

B1 fully-meshed: installs exact matching rules for each
source/destination pair of VOs on all switches involved

B2 two-level flow aggregation: compression of rules to combine
flows towards the same server/datacenter

B3 OpenStack: installs exact matching rules for each
source/destination pair of VOs only on hypervisor switches
of servers involved

B1/2/3 single overlay broadcast address, wide-area connectivity de-
termined by the minimum spanning tree

(a) unicast (b) broadcast

(c) total

Fig. 8: Number of forwarding rules in the MCO, B1, B2 and
B3 cases, given 30 VOs.

overlay and universal broadcast addresses. The wide-area
connectivity is determined by the minimum spanning tree
Qid∗δ : |Qid∗δ | = mind∈Dδ |Q

id
δ |. Adding the values obtained

in B1/2/3 to those of B1, B2 and B3 results in the total number
of forwarding rules in the considered baselines. A summary
of the aforementioned baselines is reported in Table III, for
quick reference.

Suppose that there is one-to-one correspondence between
clusters and datacenters, and VOs are uniformly distributed
among N datacenters. With 30 VOs in Vδ , all communicating
with each other, Fig. 8a shows that MCO has up to over
1 ∼ 2 order of magnitude less rules than the three baselines,
depending on the number of datacenters involved. On the other
hand, MCO has more broadcast rules than B1/2/3, as shown
in Fig. 8b, stemming from the N overlay broadcast addresses
and wide-area trees involved in broadcast forwarding. Despite
this, the total number of forwarding rules of MCO remains
better than B1 and B2 by a considerable difference, as well as
for small values of N in B3 (i.e., at N ≈ 15, MCO starts to
have more rules than B3), as shown in Fig. 8c. Moreover, the
N wide-area trees rooted at each datacenter gateway involved
are expected to provide better paths based on where broadcast
traffic is generated, compared to those given only by Qid∗δ .
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(a) B1 (b) B2 (c) B3 (d) MCO

Fig. 9: Impact of the number of VOs in an MCO network on the number of forwarding rules.

(a) B1, B2 and B3 (b) MCO

Fig. 10: Impact of the cluster/datacenter ratio on the number
of forwarding rules, given 30 VOs.

1) Impact of the number of VOs: The impact of the
number of VOs in Vδ on the number of forwarding rules
in MCO and the three baselines is illustrated in Fig. 9. A
stronger dependence on the number of VOs can be observed
for B1 and B3 due to the exact matching rules installed for
each source/destination pair of VOs in unicast forwarding.
By counting only the unicast rules on the hypervisor switches
plus the baseline broadcast rules, the latter also displays a
stabilizing behaviour with increasing number of datacenters.
Conversely, the advantage of flow aggregation in B2 becomes
more evident as the number of datacenters involved increases,
while MCO exhibits the least dependence on the number
of VOs with its particular forwarding algorithm inside and
among the datacenters.

2) Impact of the cluster/datacenter ratio: Recall that
multiple cluster centers can be mapped to the same datacenter
gateway over time – in such a case, the initial assumption of
one-to-one correspondence between clusters and datacenters
is no longer true.

With this in mind, Fig. 10 illustrates the impact of the
cluster/datacenter ratio on the number of forwarding rules in
MCO and the three baselines. As expected, B1, B2 and B3 are
only dependent on the number of datacenters involved, while
for MCO the number of forwarding rules increases with the
cluster/datacenter ratio. This behaviour of the MCO presents
a trade-off between scalability and flexibility. Particularly,
in handling bulk migrations, flexibility is improved as VOs
in V dδ with similar QoS/QoE requirements are clustered
together – possibly, into multiple centers that can be migrated
independently.

C. Seamless Mobility Support

For the wide-area rule updates during seamless bulk
migrations, MCO’s center migration approach is evaluated
with the baseline BM, which corresponds to the case of
multiple VO migrations. Fig. 11 illustrates how the number of

(a) BM (b) MCO

Fig. 11: Impact of the clustering index on the number of rule
updates during bulk migrations.

rule updates vary with the clustering index and the number of
datacenters/clusters involved for the two cases, respectively.
With a migration initiated for each VO, BM shows a stronger
dependence on the clustering index, while MCO is basically
agnostic to the parameter and only depends on the number of
clusters involved. Consequently, MCO results in up to over
one order of magnitude less number of rule updates than BM.

VIII. EXPERIMENTAL RESULTS

While MCO has multiple possible applications (e.g., mass-
scale services), we evaluate its performance by considering
the INPUT use case of “PN-as-a-service” (PNaaS) [49] [50].
Particularly, a PN is a special type of VTN that interfaces the
user’s private network with the VTN(s) of service providers
(referred to as BNs henceforth). In this section, details on the
use case, experimental testbed and considered SC scenarios
are presented together with the obtained results.

A. The INPUT Use Case

The INPUT framework seeks to provide seamless
experiences to its (mobile) users by guaranteeing a certain
level of proximity to the VOs involved – not only in their
PNs, but also in the BNs; PN-BN interactions highly depend
on users’ subscription to services. To do so, it leverages VO
portability in the Edge Computing environment, enabling
services to “follow” users, as needed. In detail, each PN
or BN is an MCO network, where VOs are organized into
clusters based on the required proximity level p ∈ {1, . . . ,P},
with lower values of p indicating tighter requirements.

Fig. 12 illustrates an example of a PN that interacts with
2 BNs. As previously anticipated, some VOs (i.e., v2 and v3)
in the PN are also associated to cluster centers of BNs (i.e.,
BN1 and BN2, respectively). Since a VO v can only reside on
a single datacenter, it follows that the PN and BN(s) centers
to which v is bound to must have the same proximity level,
and be mapped on the same datacenter. Therefore, when a PN
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Fig. 12: Clustering VOs based on the required proximity level
p and network domain (PN/BNs).

center with proximity level p is migrated, the corresponding
center(s) in the BN(s) is/are also migrated.

The MCO algorithm is currently implemented in the crater
module of the OpenVolcano platform [51] for the INPUT
project testbed.

B. Experimental Testbed

To evaluate MCO’s performance, the OpenVolcano
platform (which is running on a Linux server equipped with
an Intel® Xeon® E5-2620 v4 2.10GHz processor) is used to
emulate an underlying Telecom infrastructure, starting from
a real wide-area topology (namely, the Interroute topology,
obtained from the datasets available in [52]).

In more detail, we adapt the Interroute topology to consist
of 20 in-network datacenter nodes (i.e, randomly selected,
and as before, with Hmin = 3 as constraint in order to
obtain a solution that maximizes the topological distribution
of datacenters) and 90 transit nodes, interconnected by
148 edges (i.e., after removing self-loops). Contrary to the
simulation framework, we consider three datacenter sizes in
the experiments, rather than depths, to indicate the number
of servers in each Edge Computing facility (i.e., small (20),
medium (50) and large (100)). The size is chosen based
on the number of wide-area edges a datacenter has: 2,
3 and > 3, respectively, under the assumption that large
datacenters are more central and well connected than small
and medium-sized ones. For simplicity, but without loss of
generality, interconnection switches between the datacenter
gateways and the servers are not considered in the emulation.

To add statistical significance in the results, each test
is repeated 100 times with random CPU and RAM
capacities/requirements among servers/VOs, introducing
variations in the VO placement inside a datacenter (i.e., based
on OpenVolcano’s placement policy, which is currently on a

TABLE IV: MCO parameters for the considered SC scenarios.

SC # of BNs
# of VOs # of Clusters # of VOs/cluster

(PN + BNs) PN BNs PN BNs

SC1 5 15 5 10 2 2

SC2 10 30 10 19 2 2

SC3 5 60 5 10 11 2

SC4 5 15 5 30 2 1

SC5 10 30 10 100 2 1 ∼ 2

SC6 5 60 5 30 11 1

testing phase and beyond the scope of this work), from which
the 95% confidence intervals are obtained. Nonetheless, any
VO placement/consolidation policy can be applied.

C. SC Instantiation Complexity

Six SC scenarios (i.e., SC1,. . . , SC6) are considered in this
work. As illustrated in Fig. 13 and summarized in Table IV,
these SCs are designed to cover variations in the number of
BNs (and their interaction with the PN), clusters (PN + BNs)
and VOs involved, while keeping modularity to easily
automate their generation in the experiments.

Looking at Fig. 13, the VOs highlighted in blue
(i.e., va(2), . . . , vj(2) or va(11), . . . , ve(11)) are the ones
that are identified with two or more cluster centers (i.e., one
in the PN and another one in each BN connected); recall that
all centers associated to the same VO must have the same p
value and be mapped on the same datacenter.

Note that the time required to deploy SCs highly depends
on the instantiation of their respective L2 overlay connectivity.
With MCO, the rules required to instantiate the connectivity
for either of the six SCs can be calculated in less than
350 ms, as shown in Fig. 14; this demonstrates MCO’s
low computational complexity, even for more intricate SC
scenarios (e.g., SC5 and SC6).

It is interesting to note that while the number of rules
increases with SC complexity, the average rule calculation
time approaches a limit of around 273 ms, as indicated by
the red dotted lines. In Fig. 14a, this sublinear behaviour
manifests the impact of PN-BN interactions, mainly driven
by both the number of VOs and VTNs involved – e.g., SC3
and SC6 correspond to the highest number of VOs (at least
twice than other SCs), while SC5 to the highest number of
BNs (over three times than other SCs). In Fig. 14b, a similar
relationship is also observed between the measured times and

(a) SC1 and SC2 (b) SC3 (c) SC4 and SC5 (d) SC6

Fig. 13: SC scenarios.



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. V, NO. N, MONTH YEAR 13

(a) vs the # of rules (b) vs the # of VOs

Fig. 14: Rule calculation times for SC instantiation.

(a) calculation times (b) # of rule updates

Fig. 15: Rule updates and calculation times during a center mi-
gration, for varying number of clusters involved (PN + BNs).

the number of VOs involved, with the slope determined by
the PN-BN interactions, until the said limit is reached. Wider
confidence intervals are observed for SCs involving more
VOs (i.e., SC3 and SC6) since the VO clusters are more likely
to be distributed to different number of servers in each test.

D. Center Migration Overhead
Considering the same SCs (which also cover variations

in the clustering index), we emulate a center migration for
c1 (i.e, p = 1) of the PN to various destination datacenters in
the Telecom infrastructure, with distances between dold and
dnew ranging from 8 to 12 hops. As previously mentioned,
the corresponding cluster center(s) (i.e, p = 1) in the involved
BN(s) will also be migrated to dnew.

Note that a migration can only begin when the necessary
updates in the L2 overlay connectivity are already in place.
The rule updates required for the center migration in either
of the six SCs can be calculated in less than 500 ms, as
illustrated in Fig. 15a; this demonstrates that the time overhead
incurred by MCO’s center migration approach for seamless
bulk migration is practically negligible with respect to the
total migration duration (e.g., tens to hundreds of seconds
[50], and highly depends on the virtualization/migration
technologies used, workloads and migration paths [53]–[55]).

It can be observed in Fig. 15b that the number of rule
updates increases linearly with the number of clusters involved
(PN + BNs), almost independently of c1’s clustering index;
the latter only impacts the number of rule updates inside the
datacenters, which is expected of MCO’s center migration ap-
proach. A wider confidence interval is observed for SC5 since
migrating the PN’s center c1 also migrates the corresponding
centers (i.e, p = 1) of BNs BN1 through BN10, resulting in
a multiplicative effect in the variation of the number of rule
updates for different distances between dold and dnew.

A similar linear behaviour is also observed for the
calculation times, except that the y−intercept is determined

by the clustering index. Particularly, the increase in the
calculation times with increasing clustering index can be
attributed to the (re-)running of the shortest-path algorithm
for each of the VOs being migrated, in both dold and dnew;
still, the increase in time is not linearly proportional to the
increase in the clustering index.

IX. CONCLUSIONS

Supporting both heterogeneity and mobility of Edge
applications entails customized and dynamic traffic handling
over a shared Telecom infrastructure. While SDN provides
major gains in this respect, scalability is still an open
problem. Considering an SDN-enabled environment, this
paper proposed the MCO mechanism that offers high
scalability in realizing wide-area VTNs and seamless mobility
of VOs, among other aspects.

In contrast to state-of-the-art SDN mechanisms, numerical
results show that MCO achieves up to over one order
of magnitude smaller number of OF rules in the overlay
implementation (compared to the fully-meshed, two-level
flow aggregation and OpenStack cases), and rule updates
during center migrations (compared to initiating multiple
VO migrations), demonstrating its high scalability. MCO’s
performance has been also experimentally evaluated using
the OpenVolcano platform in the context of the INPUT use
case (i.e., PNaaS). Experimental results demonstrate its low
computational complexity with < 350 ms rule calculation
times for SC instantiation, even with more intricate SC
scenarios. Within such complex PN-BN environments, a very
low time overhead (i.e., < 500 ms rule update calculation
times) is also observed during center migrations.
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