D UNCE cniitt

ltalian Networking Workshop | Network Softwarization
Cavalese (TN), 30 January 2020

A Model-based Approach Towards

Real-time Analytics in NFV
Infrastructures

Raffaele Bolla, Roberto Bruschi, Franco Davoli, Jane Frances Paj

|[EEE TGCN ¢
10.1109/TGCN.2019.2961192
= MATILDA



1 et soenro

Sf;’é 1 ‘ Infrastructure-level Modeling




Network Softwarization

A telecom architecture paradigm shift

“.from boxes to functions, and from protocols to APIs.."” 'l

Cloud-Fog-MEC interplay results in the
pooling of computing, storage and
networking resources in a virtualized (geo-
distributed) infrastructure

NFV consolidates various types of network
appliances as VNFs on COTS hardware (in
the Cloud-Fog-MEC domain)

softwarized
SDN decouples the control and data networks

planes to enable a highly programmable
network behavior
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SCALABILITY

Heterogeneity
traffic, services, access devices and
platforms, customer requirements,
infrastructure capabilities

Management Complexity
highly modular and virtual environment, COTS hardware are not power-
increasing number of (physical/virtual) optimized, added consumption due to
network endpoints, isolation among the virtualization overhead, complex
virtual networks operation of the ACPI

SUSTAINABILITY

Performance
COTS hardware are not performance-
optimized, added delay due to the
virtualization overhead

Energy Efficiency

Technological Limitations
finite-sized rule tables in SDN switches




@ Power Management in COTS Hardware

The massive introduction of
would tend to
hardware solutions, in the absence of specific control actions.

Power

Standard
operations

LPI

AR

LPI + AR
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 sleeping and wakeup times + energy absorption peaks

increased service times
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sleeping and wakeup times + increased service times
+ energy absorption peaks
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Time

in softwarized environments
with respect to specialized

ACPI Specification

Low Power Idle (LPI)

via the - comprising
the active state C, and sleeping states
{C1,..,Cx}

Adaptive Rate (AR)

via the -

corresponding to different processing
performances {P, , ..., Py} at Cy




Goal

To enable and softwarized networks through
analytics that exposes the and KPIs in
COTS hardware according to VNF workloads.

State-of-the-art 3-8
M system modeling and analytics machine learning, queueing theory
I power-performance tradeoff optimization ACPI vs burstiness: packet-level analysis

Contributions in the paper

Modeling cores in the NFVIs as MX/G/1/SET queues
Exposing model parameters from available PMCs
VNF workload profiling and estimation of network KPIs



MX/G/1/SET Queueing Model

A generalization of the well-known M*/G/1 model for batch arrivals
that also covers the cases in which an additional setup period is
necessary before service can be resumed...

incoming traffic as a Batch Markov Arrival Process (BMAP): exponentially-
distributed batch inter-arrival times

generally-distributed setup times due to wakeups and reconfigurations
single server with generally-distributed service times
system works as a renewal process of idle (I) and delay busy (SET + B) periods

| | SET + B

idle h busy




Power Modeling

@ Renewal Theory

Power @ (W)

average renewal cycle R(y) = I(1) + 71y + B(y)

b = 1-p Aty (1-p)
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1+A1y 1+A1y

D, +pd,

T,  setuptime due to core wakeup
®; idle power consumption

®,, wakeup power consumption
®, active power consumption




Latency Modeling

@ Little’s Law g 300
R 200
L dp
W = — where L = o) —-p )
OL dz lz—1 $ 100
5

PGF of the # of packets in the system P(z)
W

1

U

PB1)*+B2) N 27+ 12 n

2BHu(1-p)  2B)(1+AT))

7;  setup time due to interrupt coalescing,
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Estimation with PMCs
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Results from Emulated BMAP Traffic

Batch arrival rate Factorial moments of the batch size
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Results from Facebook Traces!!

Fitting batch inter-arrival times to exponential distributions:
5 IP addresses

random'y chosen <|P1>: <|P2>: <|IP3>: <IP4>: <|P5>:
R=95.28% R=95.49% R=95.67% R=95.44% R=95.64%
(—A—\ R?=90.79% R2=91.19% R?=91.52% R2=91.08% R?2=91.46%
w15 - - . . o
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Network softwarization: Cloud-Fog-MEC interplay, NFV, SDN

Scalability and sustainability issues: massive use of COTS hardware,
highly heterogeneous, modular and virtual environment; increasing # of
network endpoints

Infrastructure modeling: cores as MX/G/1/SET queues

Real-time analytics in NFVIs: VNF workload profiling and estimation of
network KPIs based on PMCs

Validation based on emulated traffic and Facebook’'s dataset: high
scalability, good estimation accuracies

Power tool: augmenting VIM capabilities, development of next-generation

resource/service provisioning solutions
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Thank you!

Any questions?
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