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Network Softwarization

softwarized
networks

SDN

NFV

Cloud 
Fog 
MEC

A telecom architecture paradigm shift
“…from boxes to functions, and from protocols to APIs…” [1]

▰ Cloud-Fog-MEC interplay results in the
pooling of computing, storage and
networking resources in a virtualized (geo-
distributed) infrastructure

▰ NFV consolidates various types of network
appliances as VNFs on COTS hardware (in
the Cloud-Fog-MEC domain)

▰ SDN decouples the control and data
planes to enable a highly programmable
network behavior



SCALABILITY SUSTAINABILITY
Heterogeneity

traffic, services, access devices and
platforms, customer requirements,
infrastructure capabilities

Management Complexity
highly modular and virtual environment,
increasing number of (physical/virtual)
network endpoints, isolation among
virtual networks

Technological Limitations
finite-sized rule tables in SDN switches

Performance
COTS hardware are not performance-
optimized, added delay due to the
virtualization overhead

Energy Efficiency
COTS hardware are not power-
optimized, added consumption due to
the virtualization overhead, complex
operation of the ACPI



ACPI Specification[2]
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Power Management in COTS Hardware

▰ Low Power Idle (LPI)
via the power states (𝑪𝔁) – comprising
the active state 𝐶0 and sleeping states
{𝐶1 , … , 𝐶𝒳}

▰ Adaptive Rate (AR)
via the performance states ( 𝑷𝔂 ) –

corresponding to different processing
performances {𝑃0 , … , 𝑃𝒴} at 𝐶0

The massive introduction of COTS hardware in softwarized environments
would tend to increase power requirements with respect to specialized
hardware solutions, in the absence of specific control actions.



Goal
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To enable scalable and sustainable softwarized networks through
real-time analytics that exposes the power and performance KPIs in
COTS hardware according to VNF workloads.

State-of-the-art [3-8]

▰ system modeling and analytics
▰ power-performance tradeoff optimization ACPI vs burstiness: packet-level analysis

machine learning, queueing theory

▰ Modeling cores in the NFVIs as MX/G/1/SET queues
▰ Exposing model parameters from available PMCs
▰ VNF workload profiling and estimation of network KPIs

Contributions in the paper
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MX/G/1/SET Queueing Model

A generalization of the well-known MX/G/1 model for batch arrivals
that also covers the cases in which an additional setup period is
necessary before service can be resumed…

▰ incoming traffic as a Batch Markov Arrival Process (BMAP): exponentially-
distributed batch inter-arrival times

▰ generally-distributed setup times due to wakeups and reconfigurations

▰ single server with generally-distributed service times

▰ system works as a renewal process of idle (𝐼) and delay busy (𝑆𝐸𝑇 + 𝐵) periods

Time

    +  

idle setup busy
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Power Modeling

𝜏𝑝 setup time due to core wakeup

Φ𝑖 idle power consumption
Φ𝑤 wakeup power consumption 
Φ𝑎 active power consumption

Φ =
1−𝜌

1+𝜆𝜏𝑝
Φ𝑖 +

𝜆𝜏𝑝(1−𝜌)

1+𝜆𝜏𝑝
Φ𝑤 + 𝜌Φ𝑎

Renewal Theory

Φ =
𝐼(1)

𝑅(1)
Φ𝑖 +

𝜏(1)

𝑅(1)
Φ𝑤 +

𝐵(1)

𝑅(1)
Φ𝑎

average renewal cycle 𝑹(𝟏) =  (𝟏) + 𝝉(𝟏) + (𝟏)
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Latency Modeling

Little’s Law

𝑾 =
𝐿

𝑂𝐿
, where 𝑳 = ቚ

𝒅𝑷(𝒛)

𝒅𝒛 𝒛=𝟏
− 𝝆

𝜏𝑙 setup time due to interrupt coalescing,
core wakeups (𝜏𝑝) and reconfiguration

𝐷 =
𝜌𝛽(1)+𝛽(2)

2𝛽 1 𝜇(1−𝜌)
+

2𝜏𝑙+𝜆𝜏𝑙
2

2𝛽 1 (1+𝜆𝜏𝑙)
+

1

𝜇

𝑾

PGF of the # of packets in the system 𝑷(𝒛)
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Estimation with PMCs

ෝ𝝆 =
෪𝑶𝑳

𝝁
෥𝝆 =

෩ 𝑷𝔂
෩ 𝑷𝔂 +

෩ 𝑪𝔁 +
෩ 𝑷𝑶𝑳𝑳

෠𝝀 =
𝜶𝟏
෩ 𝑪𝒙

+ 𝜶𝟎

෡𝜷(𝟏) =
෪𝑶𝑳

෠𝝀

෡𝜷(𝟐) = max 0,
𝝁2

1 + ෠𝝀𝜏𝑙
෡ (𝟐) 𝟏 − ෝ𝝆 𝟑 −

෡𝜷 𝟏 𝟏 + ෠𝝀𝜏𝑙
𝝁2

−
ෝ𝝆 𝟏 − ෝ𝝆 ෡𝜷(𝟏) 𝟐𝝉𝒍 + ෠𝝀𝝉𝒍

𝟐

𝝁

෡ (𝟐) = 𝚫𝒕 ෞ𝒗𝒂𝒓  𝟏 + ෡ (𝟏)
𝟐

෡ (𝟏) =
𝟏

𝜼
෍

𝒏=𝟏

𝜼

 (𝟏)
𝒏

ෞ𝒗𝒂𝒓  𝟏 =
𝟏

𝜼 − 𝟏
෍

𝒏=𝟏

𝜼

 (𝟏)
𝒏 − ෡ (𝟏)

𝟐

Supposing that  (𝟏)
𝒏 , 𝑛 = 1,… , 𝜼, are iid, where  (𝟏)

𝒏 ≈ ෩ 𝑷𝔂 − 𝚫 

෪𝑶𝑳

VnStat Idlestat

෩ 𝑷𝔂
෩ 𝑪𝔁
෩ 𝑷𝑶𝑳𝑳

෨𝝀 =
𝟏

෩ 𝑪𝔁 +
෩ 𝑷𝑶𝑳𝑳

෩ 𝑷𝑶𝑳𝑳 has high variance

has busy period overhead 

due to other operations
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Results from Emulated BMAP Traffic

Utilization

Batch arrival rate Factorial moments of the batch size

Power Latency



12

Results from Facebook Traces[9]

Power

L
a
te

n
c
y

Latency

Fitting batch inter-arrival times to exponential distributions:

<IP1>: 

R=95.28%

R2=90.79%

<IP2>: 

R=95.49%

R2=91.19%

<IP3>: 

R=95.67%

R2=91.52%

<IP4>: 

R=95.44%

R2=91.08%

<IP5>: 

R=95.64%

R2=91.46%

Fitting batch sizes to generalized Pareto distributions:

<IP1>: 

R=99.85%

R2=99.7%

<IP2>: 

R=99.85%

R2=99.7%

<IP3>: 

R=99.91%

R2=99.81%

<IP4>: 

R=99.86%

R2=99.72%

<IP5>: 

R=99.9%

R2=99.8%

5 IP addresses 

randomly chosen
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▰ Network softwarization: Cloud-Fog-MEC interplay, NFV, SDN

▰ Scalability and sustainability issues: massive use of COTS hardware,
highly heterogeneous, modular and virtual environment; increasing # of
network endpoints

▰ Infrastructure modeling: cores as MX/G/1/SET queues

▰ Real-time analytics in NFVIs: VNF workload profiling and estimation of
network KPIs based on PMCs

▰ Validation based on emulated traffic and Facebook’s dataset: high
scalability, good estimation accuracies

▰ Power tool: augmenting VIM capabilities, development of next-generation
resource/service provisioning solutions

Conclusions



Thank you!
Any questions?
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